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In this paper we derive radiation balance equations for the cloudy atmosphere with account for
horizontal inhomogeneity effects. It is assumed that the clear sky and cloud occupy two
different half-spaces separated by a vertical plane. Numerical results for corresponding fluxes
are derived using the 3D code RADUGA based upon the discrete ordinate method. It is shown
how “jump” of optical properties forms shadowing or brightening at both the cloud edge and
the neighboring clear sky.
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1. Introduction

The spatial distribution of brightness of broken cloud
fields is very inhomogeneous both for reflected and trans-
mitted solar light (Marshak et al., 2000; Varnai and Marshak,
2002). Clearly, this is the case for the absorptance as well. A
humid aerosol layer surrounding the cloud could be a factor
(Redemann et al., 2009). However, the careful analysis of
the problem indicates that the 3D radiative interaction
between clouds and surrounding clear areas is a major factor
explaining corresponding extrema (Varnai and Marshak,
2009). Studies of solar light propagation based on the discrete
ordinate method (Bass et al., 1986) (code RADUGA) in 2D
regions, containing both cloud and clear sky (aerosol) with
one vertical common boundary, shows (Nikolaeva et al.,
2005) that brightness extrema in the vicinity of a cloud edge
occur even if an intermediate aerosol layer is absent.

The origin of extrema of the intensity of solar light
reflected and transmitted by the cloudy atmosphere is
studied in this paper. Only one factor, namely, the horizontal
A.A. Kokhanovsky).
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variations of optical properties of the atmosphere is taken
into account. To eliminate the influence of intermediate
layers, we consider a model problem, where a cloud and an
aerosol (clear sky) have only one common (vertical)
boundary x=0 (see Fig. 1). Besides, both media are assumed
to be homogeneous. Hence, the 3D radiative effects occur only
in the vicinity of the cloud edge. Also it is clear that far from
the common boundary both reflected and transmitted light
intensities depend only on the height z.

We simulate the radiative transfer in atmosphere using
the 3D transport equation and the discrete ordinate method
(Section 2). Applying the radiative balance relation for the
whole spatial region, not for a single pixel, see Section 3, it is
shown how the horizontal radiative transfer caused by a
“jump” of optical properties of a medium under consideration
forms shadowing or brightening at both cloud edge and
neighboring clear sky (Section 4).

2. Mathematical model

Let us put the coordinate origin at the top of the atmo-
sphere and direct the axis z to the ground. We place the axis y
along the boundary of the cloud and aerosol (in the horizontal
direction, see Fig. 1). It is assumed that the illumination
direction is perpendicular to the axis y (the azimuth Φ of the
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Fig. 1. The studied atmospheric model.
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sun is equal to 0° or 180°, see Fig. 1). In this case the radiation
intensity does not depend on coordinate y and can be found
as a solution of the 2D radiation transport equation in a cross
section of the layer−XLbxbXR, 0bzbZ, having unit thickness
over coordinate y:

ξ
∂Iðx; z; θ;φÞ

∂x + β
∂Iðx; z; θ;φÞ

∂z + σextðx; zÞIðx; z; θ;φÞ

=
1
4π

σextðx; zÞω0ðx; zÞ∫
π

0

sinθ′dθ′∫
2π

0

Iðx; z; θ′;φ′Þpðx; z;χðθ;φ; θ′;φ′ÞÞdφ′;

ð1Þ
where

ξ= sinθcosφ; β= cosθ; χðθ;φ; θ′;φ′Þ= cosθcosθ′+sinθsinθ′cosðφ� φ′Þ;
−XLb xb XR; 0bzb Z; 0bθbπ; 0bφb2π:

ð2Þ

The function I(x,z,θ,φ) in Eq. (1) defines the light intensity
at the spatial point (x,z) in the directionΩ , determined by the
angles (θ,φ) (see Fig. 1). Functions σext(x,z) and ω0(x,z) are
extinction coefficient and single scattering albedo, respec-
tively. The scattering phase function p(x,z,χ) is normalized by
the following relation

1
4π

∫
π

0

dθ′sinθ′ ∫
2π

0

dφ′ pðx; z; θ;φ; θ′;φ′Þ = 1: ð3Þ

The following boundary conditions for Eq. (1) are used:

Iðx;0; θ;φÞ = F0δðcosθ−cosΘÞδðφ�ΦÞas cosθ N 0; ð4Þ

Iðx; Z; θ;φÞ = 0ascosθb0; ð5Þ

IðXR; z; θ;φÞ = Iðx**; z; θ;φÞ as cosφ b 0; ð6aÞ

Ið−XL; z; θ;φÞ = Iðx*; z; θ;φÞ as cosφ N 0: ð6bÞ

Eq. (4) means that the medium under consideration is
illuminated by the wide solar light beam at the top (the
zenith angle Θ and azimuth Φ, see Fig. 1). The irradiance at a
unit area perpendicular to the solar beam is assumed to be
equal to F0. Eq. (5) means that the bottom boundary z=Z is
black.

The coordinates x** and x* in periodic conditions (6a)
and (6b) correspond to points, put far off both the exterior
boundaries x=−XL, x=XR and the interior boundary x=0,
see Fig. 1. The conditions (6a) and (6b) and also the homo-
geneity and semi-infinity of each medium guarantee inde-
pendence of solution I(x,z,θ,φ) on coordinate x far away from
the interior boundary. The radiation intensity far away from
the interior boundary can be obtained via the 1D slab layer
model.

Let Iaer(z,θ,φ) and Icloud(z,θ,φ) be the light intensity in clear
sky and cloud, accordingly. Note, that the radiation intensity in
the framework of IPA (Independent Pixel Approximation)
model not taking into account the radiative exchange be-
tween media is defined as

IIPAðx; z; θ;φÞ = Iaerðz; θ;φÞ as x b 0;
Icloudðz; θ;φÞ as x N 0:

�
ð7Þ

A boundary layer is defined in this paper as a spatial region
neighboring the boundary of both media, where the error of
the IPA solution is large. The sizes of boundary layers xaer and
xcloud are defined via the following expressions

max
xb−xaer

max
z;θ;φ

jεðx; z; θ;φÞ j = ε0 and max
xNxcloud

max
z;θ;φ

jεðx; z; θ;φÞ j = ε0:

ð8Þ

Here

εðx; z; θ;φÞ = 1−Iðx; z; θ;φÞ= IIPAðx; z; θ;φÞ; ð9Þ

ε0 is the relative error. For example, ε0 can be chosen as an
instrumental error. In a similar way sizes of boundary layers
can be estimated for both light intensity I(x,z,θ,φ) and some
other radiative characteristics (for instance, reflectance and
transmittance, see Section 3).
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3. Radiation balance

We derive the balance equation for the whole region,
rather than just for one pixel (Titov, 1998; Widlowski et al.,
2006). Let introduce functions, defining radiation fluxes at the
vertical boundaries of the cross section [−XL,XR]×[0,Z] of
unit width:

jRðzÞ = ∫
π

0

dθsinθ ∫
2π

0

dφsinθcosφIðXR; z; θ;φÞ

−at the right boundary x = XR;

ð10aÞ

jLðzÞ = −∫
π

0

dθsinθ ∫
2π

0

dφsinθcosφIð−XL; z; θ;φÞ

−at the left boundary x = −XL:

ð10bÞ

Each of these functions is positive if the main radiation
flux across corresponding spatial point of a boundary is
directed out of the cross section and negative in the opposite
case.

We introduce fluxes of radiation leaving the cross section
via its top and bottom boundaries

jT ðxÞ= ∫
cos θb0

dθsinθ jcosθ j ∫
2π

0

dφIðx;0; θ;φÞ

�for the top boundary;

ð11aÞ

jBðxÞ = ∫
cos θN0

dθsinθcosθ ∫
2π

0

dφIðx; Z; θ;φÞ

�for the bottom boundary:

ð11bÞ

The absorptivity c at a given point M(x,z) can be found
using the following equation:

cðx; zÞ = σabsðx; zÞΦðx; zÞ; ð12Þ

where σabs=(1−ω0)σext is the absorption coefficient and

Φðx; zÞ = ∫
2π

0

dφ∫
π

0

dθsinθIðx; z; θ;φÞ ð13Þ

is the actinic flux.
To obtain the radiative balance relation we integrate the

Eq. (1) over angles θ and φ and the spatial variables x, z in the
cross section [−XL,XR]×[0,Z] of unit width, see Fig. 1, taking
into account the normalization equality (3) and boundary
conditions (4)–(6). In particular, the integration of the first
term on the left side leads to the expression

∫
Z

0

dz ∫
XR

−XL

dx∫
π

0

dθsinθ∫
2π

0

dφsin θcosφ
∂I
∂x

= ∫
Z

0

dz∫
π

0

dθsinθ∫
2π

0

dφsinθcosφ½IðXR; z; θ;φÞ−Ið−XL; z; θ;φÞ�

= ∫
Z

0

dzf jRðzÞ + jLðzÞg

ð14Þ
It follows for the second term

∫
Z

0

dz ∫
XR

−XL

dx∫
π

0

dθsinθ∫
2π

0

dφcos θ
∂I
∂z

= ∫
XR

−XL

dx∫
π

0

dθsinθ∫
2π

0

dφcosθ½Iðx; Z; θ;φÞ−Iðx;0; θ;φÞ�

= ∫
XR

−XL

dx − ∫
cos θN0

dθsinθcosθ∫
2π

0

dφIðx;0; θ;φÞ
"

+ ∫
cos θN0

dθsinθcosθ∫
2π

0

dφIðx; Z; θ;φÞ

+ ∫
cos θb0

dθsinθ jcosθ j ∫
2π

0

dφIðx;0; θ;φÞ
#

= ∫
XR

−XL

dxf−F0cosΘ + jBðxÞ + jT ðxÞg:

ð15Þ

One finds the difference of the last term at the left side and
the scattering integral

∫
Z

0

dz ∫
XR

−XL

dx∫
π

0

dθsinθ∫
2π

0

dφ σext I−
σsca

4π
∫
π

0

dθ′sinθ′∫
2π

0

dφ′Iðx; z; θ′;φ′Þpðx; z;χÞ
" #

= ∫
Z

0

dz ∫
XR

−XL

dx∫
π

0

dθsinθ∫
2π

0

dφIðx; z; θ;φÞ σext−
σsca

4π
∫
π

0

dθ′sinθ′∫
2π

0

dφ′pðx; z;χÞ
" #

= ∫
Z

0

dz ∫
XR

−XL

dxcðx; zÞ

ð16Þ

The transformation of the first line in this equality to the
second one is carried out via variable changes; the transfor-
mation of the second line to the third one is based upon the
normalization condition (3).

Combining the equalities (14)–(16), one obtains the
required balance relation

∫
Z

0

dzf jRðzÞ+ jLðzÞg + ∫
XR

−XL

dxf jBðxÞ+ jT ðxÞg + ∫
Z

0

dz ∫
XR

−XL

dxcðx; zÞ

= ðXL + XRÞF0cosΘ;
ð17Þ

having obvious physical sense. The term (XL+XR)F0cosΘ at
the right side defines the full energy of radiation, entering the
cross section across its top boundary. The first integral at the
left side is equal to the difference of energy of radiation
leaving the cross section and entering it across vertical
boundaries x=XR and x=−XL. The second integral is equal
to energy of radiation leaving the region via the bottom
boundary z=Z and the top z=0. The double integral at the
left side defines energy absorbed within the cross section.
Eq. (17) is a major result of this work.

Let us assume now that the cross section is infinite and
homogeneous over x; such a model corresponds to a light
scattering plane-parallel layer of height Z. Then intensity does
not depend on x and the balance relation (17) has a form
(as −XL→−∞, XR→∞)

jB + jT + ∫
Z

0

dzcðzÞ = F0 cosΘ; ð18Þ
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where

F0 cosΘ energy of radiation, entering the layer across an
unit area of its top boundary,

jT energy of radiation, reflected by an unit area of the
top boundary,

jB energy of radiation, transmitted by an unit area of
the bottom boundary,

∫
Z

0

dzcðzÞ energy of radiation absorbed in the layer.

Let us introduce the reflectance and transmittance for the
slab layer

R =
jT

F0cosΘ
; T =

jB
F0cosΘ

: ð19Þ

Then the radiative balance relation (18) can be written as

R + T + A = 1; ð20Þ

where

A = k∫
z

0

dzσabsðzÞΦðzÞ ð21Þ

is the absorptance and k=1/F0cosΘ. Usually, the absorptance
is found as a difference 1−R−T from calculated values of
the reflectance and transmittance. However, it can result in
errors as A→0. Therefore, calculations using Eq. (21) are
more accurate. It follows for a vertically homogeneous layer
from Eq. (21):

A = k〈Φ〉τabs ð22Þ

or alternatively

A = kΦðz0Þτabs; ð23Þ

where

τabs = σabsZ; 〈Φ〉 =
1
Z
∫
Z

0

ΦðzÞdz≈Φðz0Þ ð24Þ

and we used the theorem on average. It follows from these
equations that the average actinic flux in the scattering layer
can be calculated as

〈Φ〉 =
1−R−T
kτabs

: ð25Þ

The actinic flux is a very important parameter for atmo-
spheric chemistry studies because it determines the photol-
ysis rate, which is influenced by 3D effects as well. The same
applies to the heating rate and the spectral density of radia-
tion u=Φ/c0, where c0 is the speed of light.

4. Numerical results

In this section we present numerical results for the spatial
distribution of radiation absorbed, reflected and transmitted
by a clear sky–cloud system. The following parameters are
assumed in calculations:

− Zenith angle of the sun Θ: 60°.
− Azimuth Φ: 0°, 180°.
− Height of the system: Z=4 km.
− Width of the system: XL=60 km, XR=30 km.
− Extinction coefficient of a clear sky region (no absorption

assumed): σ ext
aer=0.125 km−1.

− Extinction coefficient in a cloud σ ext
aer=2.5 km−1.

− Single scattering albedo in a cloudω0
cloud: 0.9, 0.95, 0.99, 1.0.

− The bottom boundary is black.

Both cloud and aerosol are assumed to be horizontally
homogeneous media. Aerosol scattering is simulated using
the Henyey–Greenstein phase function with the asymmetry
parameter g=0.7, being decomposed into P23 Legendre
series. Cloud С1 phase function is obtained via Mie theory
for the wavelength 412 nm (van de Hulst, 1980). Its peak is
replaced by delta-function using the delta-M method (Wis-
combe, 1977), and the remaining regular component is
presented by P27 Legendre series.

The solution of the problem under consideration (the light
field intensity I(x,z,θ,φ)) is found via the discrete ordinate
method using the code RADUGA (Nikolaeva et al., 2005)
assuming the underlying black surface. This code is based
upon mesh schemes of the discrete ordinate method, when
regular meshes over spatial and angular variables are intro-
duced and the transport equation in each mesh is approxi-
mated by algebraic relations. They are the balance equalities,
that resulted from the integration of the radiative transfer
equation over a mesh (not whole region), and the piece-
linear approximation to a solution desired in a mesh. Next the
successive-orders-of-scattering (SOS) iteration process with
the diffusion-synthetic acceleration (DSA) method (Marchuk
and Lebedev, 1986; Larsen, 1982), where acceleration
correction to a solution after each SOS iteration is found
as the diffusion equation solution, are used to resolve this
algebraic system. Note that the adaptive irregular spatial
meshes, the ray tracing method to construct mesh approx-
imation and the SOS iteration method with interpolation
acceleration technique to resolve an approximate system are
employed in the SHDOM code (Evans, 1998).

We show the numerical results for the following functions
(see Figs. 2–6):

1: JRðzÞ =
jRðzÞ

F0cosΘ
; JLðzÞ =

jLðzÞ
F0cosΘ

�normalized horizontal fluxes;

2: RðxÞ = jT ðxÞ
F0cosΘ

; TðxÞ = jBðxÞ
F0cosΘ

�reflectance and transmittance;

3: Cðx; zÞ = cðx; zÞ
F0cosΘ

�absorptance;

4: εRðxÞ = 1−RðxÞ= RIPAðxÞ; εT ðxÞ = 1−TðxÞ= T IPAðxÞ;
ð26Þ

where RIPA(x) and TIPA(x) are obtained via the independent
pixel approximation (IPA) method.

The illumination directions are depicted in all figures by
arrows. The illumination from a clear sky side corresponds to
the azimuth Φ=0°. The azimuth 180° is for the illumination
from a cloud side.



Fig. 2. The normalized horizontal fluxes JR(z), JL(z), their sum JL(z)+ JR(z), transmittance T(x) and reflectance R(x) for illumination from the clear sky side
(Φ=0°).
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Functions εR(x) and εT(x) are not close to zero only in the
vicinity of the boundary separating clear sky and a cloud.
They have jumps in vicinity of the media boundary by defini-
tion (26) due to the fact that IPA coefficients RIPA and TIPA are
very different for a cloud (for x=0+) and a clear sky (for
x=0−), whereas 2D coefficients R(x) and T(x) are smooth
functions.

The dimensions of regions, where 3D effects are of
importance (xraer, xtaer, xrcloud, and xt

cloud) can be found from
the following equations

max
xb−xaerr

jεRðxÞ j = 0:05; max
xb−xaert

jεT ðxÞ j = 0:05�in an aerosol

ð27aÞ

max
xNxcloudr

jεRðxÞ j = 0:05; max
xNxcloudt

jεT ðxÞ j = 0:05�inacloud:

ð27bÞ
Fig. 3. Functions εR(x) and εT(x) for illumina
They are presented in Tables 1 and 2.
In the case Θ=60°, Φ=0°, and ω0

cloud=1 (the illumina-
tion from a clear sky side, see Figs. 2 and 3), the flux JR(z) is
positive, the flux JL(z) is negative, and the sum of these fluxes
JL(z)+ JR(z) is negative almost everywhere. So the most
radiationmoves from a clear sky to a cloud (in the direction of
the direct light) via the vertical boundaries of the cross
section, but more radiation enters the region than leaves it.
“Superfluous” radiation leaves the cross section near the
vertical boundary forming maxima in transmittance T(x) and
reflectance R(x) (brightening effect).

Let us consider now the case at Φ=180° (illumination
from a cloud side, see Figs. 4 and 5). The flux JR(z) is negative,
the flux JL(z) is positive, the sum of these fluxes JL(z)+ JR(z)
is positive almost everywhere. So the most photons move
from a cloud to a clear sky region (in the direction of direct
light) via the vertical boundaries of the cross section, but
more radiation leaves the region rather than enters it. This
produces minima of transmittance T(x) and reflectance R(x)
near the vertical boundary (shadowing effect).
tion from the clear sky side (Φ=0°).



Fig. 4. The normalized horizontal fluxes JR(z) and JL(z), their sum JL(z)+ JR(z), transmittance T(x) and reflectance R(x) for illumination from the cloudy portion of
the sky (Φ=180°).
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Note, if both zones were identical, sum JL(z)+ JR(z) should
be equal to zero and transmittance T(x) and reflectance
R(x) should be constant functions of x (no brightening and
shadowing effects).

If single scattering albedo ω0
cloudb1, some radiation is

absorbed in a cloud. This process leads to the decrease of the
reflectance and transmittance in the aerosol boundary layer,
but does not change these parameters of light field far away
from the boundary of the medium, as one might expect.
We found that the decrease of the cloud single scattering
albedo leads to the reduction of the brightening effect in a
clear sky portion of the scene. The shadowing effect is
enhanced then. This leads to the decrease/increase of the
sizes of boundary layers defined above (in a clear sky) if ω0-
cloud decreases (see Tables 1 and 2).

The decrease of single scattering albedoω0
cloud is the reason

why the reflectance R(x) and the transmittance T(x) decrease
at all points at the top and bottom boundaries of a cloud,
correspondingly (far away from the interior boundary and in
its vicinity). Then the cloud boundary layers decrease too.
Fig. 5. Functions εR(x) and εT(x) for illumination fro
The absorptance C(x,z) for two cases of illumination
(Φ=0° and Φ=180°) is presented in Fig. 6. It can be seen
the greatest absorption, and, therefore, the actinic flux and the
photolysis rate, takes place near planes, across which the
direct light from the sun enters a cloud. They are the top
boundary (for both cases) and the left boundary (for
illumination from a clear sky side). The smallest absorption
takes place near the bottom cloud boundary, where the light
intensity is the smallest. It follows that C(x,z) does not depend
on x in deep layers of a cloud far away from the boundaries.
We conclude that broken cloud fields significantly modify the
radiative fluxes, the actinic flux and the photolysis rates at the
regions close to the cloud boundaries.

5. Conclusion

The technique to study the radiation intensity distribution
in the horizontally inhomogeneous clear sky–cloud system is
presented. The technique is applied to a model problem, in
which each medium (both an aerosol and a cloud) is homo-
m the cloudy portion of the sky (Φ=180°).



Fig. 6. Absorptance C(x,z) in a cloud atω0
cloud=0.99 and illumination from the clear s

to 60° in both cases.

Table 1
Sizes of boundary layers xr

aer and xr
cloud (km), where 3D effects exist, for

reflectance R(x) at various values of the single scattering albedo ω0
cloud and

the solar azimuth Φ. The solar zenith angle is equal to 60°.

ω0
cloud Φ=180° Φ=0°

xr
aer xr

cloud xr
aer xr

cloud

0.9 20.25 0.90 6.25 5.25
0.95 18.75 1.70 9.25 6.25
0.99 16.75 3.30 13.25 7.25
1.0 15.25 3.90 14.25 7.75

Table 2
Sizes of boundary layers xr

aer and xr
cloud (km), where 3D effects exist, for

transmittance T(x) for various values of the single scattering albedo ω0
cloud

and the solar azimuth Φ. The solar zenith angle is equal to 60°.

ω0
cloud Φ=180° Φ=0°

xr
aer xr

cloud xr
aer xr

cloud

0.9 8.75 0.10 0.50 7.75
0.95 8.25 2.30 2.30 8.25
0.99 7.25 4.10 4.50 8.75
1.0 6.75 4.70 4.90 8.75
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geneous and semi-infinite along the horizontal coordinates
and media have one common vertical plane boundary. All
coefficients are calculated using the spatial-angular distri-
bution of radiation intensity obtained by the code RADUGA
(Nikolaeva et al., 2005) in the framework of the 2D (x, z)
geometry. It is shown how the horizontal “jump” of optical
properties leads to the well-known brightening and shadow-
ing effects at the edge of a cloud and in a neighboring clear
sky region.

It is shown that these effects are tightly connected with
the horizontal radiation transport in broken cloud systems
and appear even for nonabsorbing media. The absorption of
radiation can enhance or relax these effects in dependence, in
particular, on the solar zenith angle.

It should be stressed that we consider only the model
problem with the sharp plane vertical interior boundary and
not general broken cloud systems. The optical properties of
real atmosphere are often changed smoothly and there are
intermediate sub-regionswith varying concentrations of drops
and wet aerosol particles (Redemann et al., 2009). Therefore,
the results presented here are only approximately valid for the
real-world cloud systems. However, we do hope that they will
be found to be useful for better understanding the multi-
dimensional radiative transfer in cloudy atmospheres.
ky side (top) and from the cloud side (bottom). The solar zenith angle is equal
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