
Cellular Statistical Models of Broken Cloud Fields. Part I: Theory

MIKHAIL D. ALEXANDROV

Department of Applied Physics and Applied Mathematics, Columbia University,

and NASA Goddard Institute for Space Studies, New York, New York

ALEXANDER MARSHAK

NASA Goddard Space Flight Center, Greenbelt, Maryland

ANDREW S. ACKERMAN

NASA Goddard Institute for Space Studies, New York, New York

(Manuscript received 29 October 2009, in final form 17 February 2010)

ABSTRACT

A new analytical statistical model describing the structure of broken cloud fields is presented. It depends on

two parameters (cell size and occupancy probability) and provides chord distributions of clouds and gaps

between them by length, as well as the cloud fraction distribution. This approach is based on the assumption

that the structure of a cloud field is determined by a semiregular grid of cells (an abstraction of the atmo-

spheric convective cells), which are filled with cloud with some probability. First, a simple discrete model is

introduced, where clouds and gaps can occupy an integer number of cells, and then a continuous analog is

developed, allowing for arbitrary cloud and gap sizes. The influence of a finite sample size on the retrieved

statistics is also described.

1. Introduction

Clouds play an important role in the earth’s climate.

Classification of extensive satellite observations of clouds,

as well as modeling of cloud dynamics and radiation

processes in general circulation models, demands simple

statistical parameterizations of broken cloud fields. Ob-

servations of cloud fields often are made along lines that

transect the field. Such observations include, for example,

lidar and ground-based sun-photometric measurements.

The latter provide a binary time series indicating either

presence or absence of cloud at a given moment in the

line connecting the instrument and the sun [see the de-

scriptions of cloud screening algorithms by Alexandrov

et al. (2004) for the Multifilter Rotating Shadow-Band

Radiometer (MFRSR) (cf. Harrison et al. 1994) and by

Smirnov et al. (2000) for the CIMEL sun/sky radiometer

operated by the Aerosol Robotic Network (AERONET)

(cf. Holben et al. 1998)]. These time series have been used

to provide statistical distributions of cloud cover and cloud

overpass times, which can be converted into cloud chord

length (CCL) distributions using wind speed estimates. If

horizontal shapes of clouds can be assumed to be round

(e.g., in the cumulus case), a CCL distribution can be

converted into area distribution (Yau and Rogers 1984;

Sauvageot et al. 1999). Similarly to the cloud chord length,

distributions of lengths of clear-sky gaps between clouds

can be also derived. Theoretical statistical studies of

geophysical fields distributed along a line were performed

by Sánchez et al. (1994) and Astin and Di Girolamo

(1999). Cloud statistics from linear transects play an im-

portant role in stochastic radiative transfer models (Byrne

2005; Lane-Veron and Somerville 2004). Several studies

have been published describing the cloud chord statistics

based on both ground-based measurements (Lane et al.

2002; Berg and Kassianov 2008) and aircraft and satellite

data (Plank 1969; Cahalan and Joseph 1989; Joseph and

Cahalan 1990; Rodts et al. 2003). Some of these studies,

especially those restricted to fair weather cumulus fields,

report exponential cloud chord length distributions (Astin

and Latter 1998; Lane et al. 2002), while others report
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power-law distributions (Cahalan and Joseph 1989; Koren

et al. 2008). The observed cloud chord distribution depends

on the dominant cloud type(s) during an observation

period.

There are two main categories of cloud models widely

used in simulating the spatial distribution of cloud con-

densate: dynamical and stochastic cloud models. Dynam-

ical cloud models are physically based but require a lot

of atmospheric parameters to be specified and are often

computationally expensive. Stochastic cloud models are

based on satellite, aircraft, or ground measurements and

generate cloud fields close to the observed ones (Evans

and Wiscombe 2004; Hogan and Kew 2005; Venema et al.

2006; Prigarin and Marshak 2009) and are computation-

ally inexpensive. Some stochastic models generate cloud

fields with an internal cloud structure (Schertzer and

Lovejoy 1987; Cahalan 1994; Marshak et al. 1994; Schmidt

et al. 2007), while others generate cloud fields as a binary

mixture of cloudy and cloud-free areas (Su and Pomraning

1994; Zuev and Titov 1995; Prigarin et al. 2002). The latter

have been used for stochastic radiative transfer model-

ing, which provides a radiation field averaged over many

realizations of a stochastic cloud model (Sánchez et al.

1994; Titov 1990; Malvagi et al. 1993; Kassianov 2003;

Lane-Veron and Somerville 2004).

Unlike a completely deterministic model of a cloud

field (Aida 1977; Kite 1987; Breon 1992), which consists

of identical clouds with centers on a regular grid, in a

stochastic model the most straightforward assumption

(approximation) of the distribution of cloudy and clear

areas in a binary mixture is a homogeneous Markovian

distribution. For this distribution, statistics of the medium

are everywhere the same; thus, the probability of moving

from cloudy areas to clear (or the reverse) along a line is

independent of the position on the line (e.g., Byrne 2005).

This assumption leads to an exponential distribution of

cloud chord (and cloud separations) lengths, though not

necessarily with the same characteristic lengths. For ex-

ample, in the stochastic model of Su and Pomraning (1994)

nonoverlapping clouds of fixed length randomly placed

in an infinite 1D atmosphere exhibited exponential in-

tercloud spacing distribution. Other models (Randall and

Huffman 1980; Ellingson 1982; Ramirez and Bras 1990)

allow for a variety of cloud sizes, dimensions, and altitudes.

We introduce a cloud-field model based on an alter-

native to the above described statistical models. Instead

of randomly creating and then randomly placing a cloud

into the model ‘‘atmosphere’’ (e.g., Su and Pomraning

1994), we consider the latter as a lattice with cells (of size

l) that may either be occupied by a cloud with proba-

bility p or be clear with probability q 5 1 2 p. Lattice

models like this are widely used in percolation theory

(cf. Isichenko 1992). Such an approach was used for cloud

modeling by Nagel and Raschke (1992), but in a different

form than that presented here. The advantage of a lattice

model is in parameterizing the cloud field as a whole,

considering clouds and gaps between them together, and

allowing the relation of such quantities as cloud cover

(or fraction) and distributions of clouds and gaps by size,

which appear at first glance to be independent. We fur-

ther develop our model by allowing clouds to take arbi-

trary size and shape (instead of being clusters of several

square cells) while retaining the basic statistical prop-

erties of the discrete-cell prototype (i.e., the probability

of a cell of size l being occupied by cloud still equals p).

Computations in the framework of the continuous model

were performed in 1D case; however, their results are

also applicable to the statistics of 2D cloud fields (which

need to be reasonably statistically isotropic) sampled

along 1D transects.

Physically, the cell model is justified by the observed

structure of cumulus [e.g., Wielicki and Welch (1986)] and

stratocumulus (Nicholls 1989) cloud fields. In particular,

Wielicki and Welch (1986) report that the fair weather

cumulus clouds (even as small as 1 km in diameter) ob-

served in their Landsat-based study were often multicelled,

with cell sizes ranging from 250 m to 1 km. The aircraft-

based observations by Nicholls (1989) show the chord dis-

tribution of convective cells in stratocumulus cloud fields

to be consistent with the hexagonal cell structure having

average cell diameter ranging from 200 to 600 m (i.e.,

being approximately half of the boundary layer depth). A

convective cell can be filled (completely or partially) with

cloud or remain cloud-free depending on atmospheric

conditions. While we do not pursue their physical nature

in this study, the cells in our model can be considered as

abstractions of the atmospheric convective cells. We will

refer to them as cellular statistical model (CSM) cells.

In section 2 we describe the basic discrete cellular cloud

model. The statistics of its continuous extension are pre-

sented in section 3. Section 4 describes the construction

of numerical examples in 1D and 2D cases. The rela-

tionship of our construction to the Ising model is ex-

plained in section 5. We conclude with discussion and

a summary in sections 6 and 7.

2. Discrete cloud field model with fixed
occupancy probability

We start with presentation of the basic discrete-cell

model, and then construct its continuous extension, which

is more capable of describing realistic cloud fields.

a. Infinite lattice

Let us consider first an infinite 1D lattice, each cell

of which can be occupied by cloud with probability

2126 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



p (0 , p , 1) or remain empty with probability q 5 1 2 p.

We define a cloud of the size m as a sequence of m

neighboring cloudy cells separated from other clouds by

at least one clear cell at each end of the cloud. The

statistical distribution of clouds by size is geometric:

n
c
(m) 5 qpm�1, (1)

where m 5 1, 2, 3, . . . . Indeed, the probability of finding

a cloud of size m is q2pm and that of finding any cloud at all

is qp. Thus, the conditional probability of finding one,

given that there is cloud there, is qpm21. Note, that the

smallest cloud size is 1, even if p / 0. This distribution can

be also derived from Bernoulli’s scheme of independent

trials starting at a cloudy cell and repeated until the first

failure (clear cell). It satisfies the normalization condition

�
‘

m51
n

c
(m) 5 1 (2)

and has the mean

m
c
5

1

q
. (3)

The statistical distribution of clear intervals (gaps) be-

tween clouds in our model can be obtained from Eq. (1)

by interchanging p and q:

n
g
(m) 5 pqm�1. (4)

It is normalized similarly to Eq. (2) and leads to the mean

gap size

m
g

5
1

p
. (5)

b. Finite-length samples

In the real-world observations, cloud field samples have

finite size. As we will show below, the observed cloud

length statistics are influenced by the sample size, espe-

cially for large clouds. Also, we need to consider overcast

clouds (i.e., those with the length equal to or exceeding

the sample size), which do not exist on the infinite lattice.

In the case of finite sample consisting of N cells, the

cloud size distribution takes the form (derived in ap-

pendix A)

n
c
(m) 5 1 1

1� qm

1 1 q(N � 1)

� �
qpm�1 (6)

for m , N, while

n
c
(N) 5

pN�1

1 1 q(N � 1)
(7)

for m 5 N. By construction, nc is normalized by

�
N

m51
n

c
(m) 5 1 (8)

and has the mean

m
c
5 q 1

p

N

h i�1

. (9)

In the limit N / ‘ (N � m), the distribution (6) be-

comes geometric (1), while nc(N) vanishes and the mean

cloud size takes the form (3). In the opposite limit case

of N 5 1, the mean cloud size (9) is expectedly equal to 1,

and nc has only one value nc(N) 5 1. In the limiting case

of p 5 0 (q 5 1, no chance of a cloud), m
c

5 1, which is

the minimal possible size in the discrete model. Indeed,

in the discrete model as p tends to 0, it becomes in-

creasingly difficult to find a cloud, but if we succeed in

finding one, it cannot be smaller than the cell size. In the

overcast case p 5 1 (q 5 0, no chance of clearing), mc 5 N,

which is the full length of the sample.

The size distribution for gaps between clouds can be

obtained from Eqs. (6) and (7) by replacing p with q:

n
g
(m) 5 1 1

1� pm

1 1 p(N � 1)

� �
pqm�1 (10)

for m , N and

n
g
(N) 5

qN�1

1 1 p(N � 1)
(11)

for m 5 N. This distribution is normalized by the same

condition as nc [Eq. (8)] and has the mean

m
g

5 p 1
q

N

h i�1

. (12)

c. Cloud cover

Another important characteristic of a cloud field is the

cloud cover (also referred to as cloud fraction),

c 5
k

N
, (13)

where k is the number of all cloudy cells (not necessarily

consecutive) in a sample of size N. As follows from

combinatorics, the probability of having k occupied cells

in a sample obeys the binomial distribution
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n
cf

(k) 5
N

k

� �
pkqN�k, k 5 0, 1, . . . , N, (14)

where

N

k

� �
5

N!

k!(N � k)!
(15)

is the binomial coefficient. The distribution (14) is nor-

malized by

�
N

k50
n

cf
(k) 5 1 (16)

and has the mean

k 5 Np, (17)

corresponding to c 5 p.

3. Continuous limit

As mentioned above, in reality atmospheric cells are

not necessarily completely full with cloud or completely

empty. They can be occupied partially, which means that

the observed cloud/gap size distributions are continuous

rather than discrete. To reflect this property in our model,

we make the transition from the discrete to continuous

cloud length distribution. To do this, let us divide each

cell of size l into M subcells of the size

l
s
5

l

M
. (18)

Then, to keep the occupation probability of a whole cell

equal to p we need to assume that the occupation prob-

ability of a subcell is

p
s
5 p1/M, so that pM

s 5 p. (19)

We define the continuous cloud length x corresponding

to ms subcells as

x 5 m
s
l
s
5

m
s

M
l, (20)

and the corresponding increment dx for the continuous

probability density is

dx 5 l
s
5

l

M
. (21)

a. Infinite lattice

The geometric cloud length distribution (1) expressed

in terms of subcell number is

n
c
(m

s
) 5 (1� p

s
)p

ms�1
s 5 (1� p1/M)p(m

s
�1)/M. (22)

To obtain the continuous probability density we need to

take the limit M, ms / ‘, while preserving the value of x.

Taking into account that ey ’ (1 1 y) when y 5 1/M� 1,

we find that

1� p1/M 5 1� e(lnp)/M !M!‘ � lnp

M
, (23)

and Eq. (22) takes the form

n
c
(x) 5�lnp

M
px/l 5

�lnp

l
e�[�x(lnp)/l] l

M
, (24)

which can be written in terms of exponential distribution

density fc(x):

n
c
(x) 5 f

c
(x) dx, (25)

where

f
c
(x) 5

1

L
c

e�x/L
c (26)

with the cloud mean length

L
c
5� l

lnp
. (27)

Similar computations for the gap distribution (4) lead to

the gap distribution density

f
g
(x) 5

1

L
g

e�x/L
g (28)

with the gap mean length

L
g

5� l

lnq
. (29)

It follows from Eqs. (27) and (29) that p and l are

uniquely determined by the observed values of Lc and

Lg. Indeed, p can be found as a (numerical) solution of

lnp

ln(1� p)
5

L
g

L
c

, (30)

and then l can be determined as

l 5�L
c

lnp. (31)

Thus, Lc and Lg provide an alternative (but equivalent)

parameterization of the model, and in some approaches
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(e.g., Astin and Di Girolamo 1999) the use of p and l, as

well as the whole ‘‘cellular’’ concept, is avoided.

b. Finite-length samples

Computations similar to those presented above can be

performed in the case of a 1D sample of a finite length:

L 5 Nl 5 NMl
s
. (32)

In this case Eq. (6) transforms into the probability density

f
c
(x) 5

1

L
c

1 1
1� (x/L

c
)

1 1 a
c

� �
e�x/L

c (33)

for x , L, while the overcast contribution does not vanish

with dx / 0, becoming

f o
c 5

e�ac

1 1 a
c

. (34)

Here we used the following notations:

a
c
5

L

L
c

5�ln(pN) and a
g

5
L

L
g

5�ln(qN). (35)

The fact that the overcast contribution does not scale

with dx means that the complete length distribution of

clouds has a singularity at x 5 L:

F
c
(x) 5 f

c
(x) 1 f o

c d(x� L), x2 [0, L]. (36)

It is easy to show (see appendix B) that Fc, rather than fc,

is normalized:

ðL

0

F
c
(x) dx 5 1. (37)

The mean cloud length for the distribution (36) is (see

appendix B)

x
c
5

LL
c

L 1 L
c

, (38)

which implies that

1

x
c

5
1

L
c

1
1

L
. (39)

It follows from this formula that xc ! Lc as L / ‘,

while for finite L we always have xc , Lc; in particular,

for a very small sample (L � Lc, ac � 1) we expect

x
c
’ L.

Technically, small l/M 5 dx in Eq. (24) comes from

the factor (1 2 ps)� 1 in Eq. (22), which is absent in the

expression for overcast probability; however, the sin-

gularity of the cloud length distribution can also be ex-

plained by the independence of all-clear and overcast

statistics on the size of the histogram bin. Note also that

in the case of a single cell box (N 5 1, L 5 l) the value of

f c
o 5 p/(1 2 lnp) is not equal to 1 (unless p 5 1), as it

would be in the discrete case. In fact, it is always less

than 1, allowing for a continuous population fc of subcell

clouds.

The corresponding gap distribution statistics can be

obtained from the above formulas by replacing Lc and ac

with Lg and ag.

c. Cloud cover

A continuous analog of the binomial cloud cover dis-

tribution (14) can be obtained in a similar way; however,

the computations in this case are substantially more com-

plicated (see appendixes C and D). The resulting singular

density

F
cf

(c) 5 f
cf

1 f
(0)
cf d(c) 1 f

(1)
cf d(1� c), (40)

obeying

ð1

0

F
cf

(c) dc 5 1, (41)

has the following components: the continuous density

f
cf

(c) 5
2a

c
a

g

a
c
1 a

g

e�[a
c
c1a

g
(1�c)]

3 I
0
(Z) 1 [a

g
c 1 a

c
(1� c)]

I
1
(Z)

Z

� �
, (42)

where I0 and I1 are modified Bessel functions of the

argument

Z 5 2[a
c
a

g
c(1� c)]1/2; (43)

and the all-clear sky and overcast probabilities

f
(0)
cf 5

a
c

a
c
1 a

g

e�a
g and (44)

f
(1)
cf 5

a
g

a
c
1 a

g

e�a
c . (45)

Note that the latter probabilities are fractions of the

corresponding probabilities in the discrete model, re-

spectively

qN 5 e�a
g and pN 5 e�a

c . (46)
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This fact indicates that fractional cloud cover is more

probable in a continuous model than a discrete one. In

particular, when N 5 1 the all-clear and overcast prob-

abilities in discrete model add up to unity, while in the

continuous case they allow for subcell clouds.

The mean cloud cover for the distribution (40) has the

following form (see appendix D), which appears to be

independent of the sample size L:

c 5
a

g

a
c
1 a

g

5
L

c

L
c
1 L

g

. (47)

For an infinite sample this formula is quite intuitive (the

mean cloud length divided by the sum of mean lengths of

cloud and gap) and has been published in the literature

(Sánchez et al. 1994; Astin and Di Girolamo 1999; Byrne

2005); however, it is far from obvious that this relation

holds in a finite sample case. Equation (47) can be also

be written in the form

c 5
ln(1� p)

lnp 1 ln(1� p)
, (48)

which can be used to derive p from the observed cloud

fraction. The plot of c versus p is shown in Fig. 1. We see

that c 6¼ p, unless p 5 1/2, 0, or 1: for p , 1/2 cloud cover

is always smaller than p, and vice versa for p . 1/2.

The distribution (C77) with the density (C78) and end

components (C80) [leading to Eqs. (40), (42), (44), and

(45)] has been also derived by Astin and Di Girolamo

(1999) using an approach inspired by queue theory

(Takacs 1957; Conolly 1971); however, they did not com-

pute the mean in the finite sample case, and thus the initial

probabilities u and y 5 1 2 u remained undetermined. It

also was not clearly spelled out in that study that the end

values (C80) are the coefficients at the corresponding d

functions [as in Eq. (40)].

When L is considerably larger than the mean sizes of

clouds and gaps (L � Lc, Lg), the width of the distri-

bution density (42) becomes very narrow, while both

completely clear sky and overcast cases become im-

probable. Thus, in the limit case of an infinite sample

(L 5 ‘, assuming that p 6¼ 0 and p 6¼ 1, so that ac, ag / ‘)

we have

F
cf

(c) [ f
cf

(c) 5 d(c� c), (49)

and

f
(0)
cf 5 f

(1)
cf 5 0 (50)

(see appendix D for details).

4. Construction of examples

Generation of an example of a 1D or 2D cloud field

according to a discrete model is quite straightforward

since the cells are filled independently one from each

other. Thus, we do not show 1D examples from the dis-

crete model, while a 2D example is presented (Fig. 8, top

left). In a continuous model the situation is different since

the subcells are no longer independent; that is, the filling

probability of a subcell is conditioned on the clear/cloudy

statuses of its neighbors.

a. 1D case

In the 1D case we define the subcell filling probabilities

p
s
5 p1/M and q

s
5 q1/M (51)

to preserve the original filling probabilities p and q for

the whole cells. As M / ‘, ps, qs / 1. Note, that ps 1

qs 6¼ 1, since in distinction from p and q in the original

(discrete) cellular model, ps and qs are conditional

probabilities: ps (qs) is the probability of a subcell to be

cloudy (clear) given that the previous subcell is cloudy

(clear). Thus, to construct a realization of a continuous

model (which is not strictly speaking ‘‘continuous,’’ since

in such an example M is finite) we move through the sam-

ple lattice from left to right using the following rule: if

the ith subcell is cloudy we use ps for cloudy and 1 2 ps

for clear to find the status of the (i 1 1)th subcell, and

conversely, if the ith subcell is clear we use probability qs

for clear and 1 2 qs for cloudy. Obviously, the switch

between cloud and clear sky appears when the (i 1 1)th

subcell status differs from that of the ith subcell. The

procedure continues until the end of the sample is reached.

The probability of the first subcell to be cloudy should be

FIG. 1. Plot of c in a continuous model vs p from Eq. (48) (solid

curve). The identity c 5 p is shown by the dashed line; the dotted

lines correspond to p 5 0.5 and c 5 0.5.
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the same as of any other cell in the sample and thus equal

to the mean cloud cover (47). The first subcell status can

be selected directly according to this probability. An-

other way to do this (which was actually used to create

the examples described below) is to create a longer

sample (e.g., 3 times longer than required), with an ar-

bitrary selection of the first subcell, and then take the

last third of it as our example. This procedure is equiv-

alent to the direct status selection, since Eq. (47) also

gives the mean cloud cover of a long sample with an

arbitrary first subcell status (the sample statistics ‘‘forget’’

that status after a certain length). We should mention that

while the probability of transition from cloudy to clear is

different from the probability of transition from clear to

cloudy (if p 6¼ 1/2), the chord statistics do not depend on

the direction of filling the sample (Sánchez et al. 1994).

A set of examples generated according to this pro-

cedure is presented in Figs. 2–7. The plots are generated

for p 5 0.5, 0.25, and 0.1 and L 5 15l (Figs. 2–4, sub-

division number M 5 20) and L 5 l (Figs. 5–7, subdivision

number M 5 200). Although, strictly speaking, one needs

an infinite number of samples in order to use statistics for

such a model, in practice we have to use a finite number of

simulations. This number should be sufficiently large to

closely approximate the ‘‘true’’ statistical distributions

(represented by the theoretical curves in our case). We

used 5000 samples in each of our simulations. The first 50

of them are shown in the top left panel of the corre-

sponding figure, while the histograms in the other three

panels are based on the whole 5000-sample datasets.

The cloud cover histograms are in the top right panels

with the solid lines depicting the theoretical probability

FIG. 2. Statistics of 1D cloud fields modeled according to our continuous cellular model with p 5 0.5 and L 5 15l (M 5 20). (top left) The

first 50 of 5000 samples used. (top right) Cloud cover histogram, in which the solid line is the theoretical probability density Eq. (42), the

theoretical mean is computed using Eq. (47), and all-clear and overcast fractions are computed using Eqs. (44) and (45). (bottom left)

Cloud length histogram, in which the solid line is the theoretical density Eq. (33) and the dashed line depicts the infinite-sample density

Eq. (26). The theoretical overcast fraction is derived from Eq. (34). The theoretical mean cloud length is computed using Eq. (38), while its

infinite-sample value Lc is determined from Eq. (27). The estimate of Lc from simulations is also presented. (bottom right) As in bottom

left, but for gap lengths.
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density (42). The theoretical mean cloud covers are com-

puted using Eq. (47), while all-clear and overcast fractions

are computed using Eqs. (44) and (45). The bottom left

panels show cloud length histograms with the theoretical

densities (33) depicted by solid lines, while the dashed

lines correspond to the infinite-sample density (26). The

difference between the finite and infinite-sample densities

is better seen in the case of short sample (Figs. 5–7), where

the former shows better agreement with the simulations.

The theoretical all-clear and overcast fractions are de-

rived from Eq. (34). Expectedly, for short samples these

fractions are relatively large. For example, for p 5 0.5

they both are 25% in cloud cover for N 5 1 and virtually

zero for N 5 15. Thus, in the former case 50% of samples

have fractional cloud cover (note that in the discrete model

such samples are not allowed). The theoretical mean cloud

lengths are computed using Eq. (38), while the values of

Lc are determined from Eq. (27). The bottom right pan-

els provide analogous descriptions of the gap length dis-

tributions. We see from these plots that the simulation

histograms constructed using the ‘‘long sample’’ method

described above agree with the theoretical curves. This

agreement indicates that the theoretically derived first

subcell status probabilities are correct, and also that our

simulations are not biased. Examples for p . 1/2 (not

shown) are similar to those shown: one just needs to in-

terchange clouds and gaps (and, therefore, p and q) and

the cloud cover distribution histogram flips around the

vertical axis at c 5 0.5.

b. 2D case

In the 2D case, the discrete example of a cloud field

(Fig. 8, top left) is a lattice with square cells of edge size

l randomly filled with cloud (with probability p). The

cloud (chord) length statistics are the same as in 1D case,

since each row or column can be considered as a 1D

sample with the same l and p. Construction of subgrid

examples in 2D is more complicated than in 1D because

there is no clear direction for filling the sample. In the

2D case an unfilled subcell may have already filled

neighbors with different statuses, making the decision of

its own status ambiguous. While the correct way to fill

FIG. 3. As in Fig. 2, but for p 5 0.25.
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a 2D sample may well exist, we have not found it yet.

Thus, instead of a filling procedure, we use an ad hoc

iterative ‘‘mixing’’ algorithm to construct 2D broken

cloud fields. This algorithm follows the general ideology

of a continuous cell model; however, agreement of the

statistics of its output with those prescribed by the model

still remains to be checked (this requires extensive simu-

lations). We start by creating a discrete model realization

described above on the N 3 N grid with spacing l. Then,

we divide each cell into M2 subcells, creating the initial

NM 3 NM state for our iteration process. As in the 1D

case, we define the subgrid filling probabilities

p
s
5 p1/M2

and q
s
5 q1/M2

. (52)

To simplify the simulation we leave the subcells on the

sample borders intact (more rigorously, after complet-

ing the simulation we should take a smaller sample,

which does not contain border cells). Each subcell inside

the sample has eight neighbors. If on the ith iteration

step n of these neighbors are cloudy and (8 2 n) are

clear, then the probability of our cell being cloudy on the

next (i 1 1)th step is

p
i11

5
np

s
1 (8� n)(1� p

s
)

8
. (53)

To suppress creation of an unphysical ‘‘fog’’ of small

clouds (most of them consisting of a single subcell) and

similar small holes inside clouds, we impose the fol-

lowing condition: if on the ith iteration step a subcell had

seven or eight cloudy (clear) neighbors, it will be cloudy

(clear) on the next step (with probability 1). If p , 1/2

(p . 1/2) this iteration procedure leads to monotonic

decrease (increase) in cloud cover. Thus, to obtain an

example consistent with our continuous model, the itera-

tions should be stopped when the cloud cover comes close

to the value prescribed by Eq. (48). To be precise, the

ensemble average of cloud cover over a number of

samples constructed in the same way (with the same

number of iterations) should agree with the value from

Eq. (48). However, if only one example needs to be

FIG. 4. As in Fig. 2, but for p 5 0.1.
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constructed, reaching this value can be used as a signal to

stop the iterative process.

An example of the above described construction of a

2D sample cloud field is shown in Fig. 8. For this sample

we took p 5 0.24 and a 15 3 15-cell grid. Each of the cells

was divided into M 3 M subcells with M 5 20. The cloud

cover 0.276 of the initial discrete-model simulation (top

left) is close to p, while during the mixing process it

drops to 0.16 after 180 iterations (bottom right). We stop

the iterations at this point, since this cloud cover value

corresponds to our p according to Eq. (48). We see that

the resemblance to the initial state gradually decreases

during the mixing iterations. The final cloud field looks

more realistic than the initial sample, since the clouds now

have more detailed structure rather than being clusters

of a few square cells.

5. Relationship to the Ising model

The 2D Ising model is widely studied both analytically

and numerically with applications in phase transitions

and critical phenomena. The classical approach to Monte

Carlo simulations of this and other statistical lattice

models is the Metropolis ‘‘importance sampling’’ algo-

rithm (Metropolis et al. 1953). In this classical approach

the states of the sample are generated recursively one from

the other with some transition probability. The difference

between the neighboring states is small: usually a single

spin flip at a random location. Recently more computa-

tionally efficient methods have been developed—for ex-

ample, cluster flip algorithms (Swendsen and Wang 1987;

Wolff 1989), in which large regions of spins are flipped

instead of single spins.

Our above described method for construction of a

‘‘realistic’’ 2D broken cloud field, while showing some

resemblance to Ising model simulations, is different from

the Metropolis algorithm and its relatives. While our

method is also an iterative procedure, only its final state

is considered as a representation of the continuous cloud

model. Another representation should be generated in-

dependently. Our method also cannot be used for simu-

lation of phase transitions, since we directly prescribe on

FIG. 5. As in Fig. 2, but for L 5 l and M 5 200.
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the first step the positions of what would later become

‘‘domains’’ rather than letting them form naturally during

a simulation.

However, there is certainly similarity between our

continuous model and the Ising model in the 1D case,

based on interpretation of both these models in terms of

a Markov process. Indeed, a realization of our contin-

uous model constructed according the procedure de-

scribed in section 4a is a binary Markov chain with the

transition matrix

P 5
P

11
P

1�
P�1

P��

� �
5

p
s

1� p
s

1� q
s

q
s

� �
, (54)

where Pij is the probability of transition from state i into

state j. Both i and j can take two values: a plus sign 5 11

(cloudy) or a negative sign 5 21 (clear). Each row of P

sums to unity.

A state of the 1D Ising model (cf. Baxter 1982) is

described by values of a sequence s 5 fs1, s2, . . . , sng of

n random variables (spins) si, each of which can take

values of 61 (indicative of cloudy or clear subcell in our

model). The probability of the system being in a partic-

ular state s is

P(s) 5 Z�1e�E(s)/kT , (55)

where E(s) is the state’s energy,

E(s) 5�J�
n

j51
s

j
s

j11
�H�

n

j51
s

j
, (56)

and Z is the partition function,

Z 5 �
s

e�E(s)/kT , (57)

where summation is taken over all possible states, and T

is the system’s temperature, k is Boltzmann’s constant,

H is the magnetic field, and J is the coupling constant.

FIG. 6. As in Fig. 5, but for p 5 0.25.
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Here we do not discuss boundary conditions, which may

alter the summation in Eq. (56). It can be shown (cf.

Baxter 1982) that P(s) can be represented as a product

of probabilities involving only neighboring spins, which

have the form

P
j
5 exp Ks

j
s

j11
1

h

2
(s

j
1 s

j11
) 1

a

2
(s

j
� s

j11
) 1 b

� �
.

Here

K 5
J

kT
and h 5

H

kT
, (58)

and a and b are constants necessary for consistency with

the definition of transition probability. Indeed, Pj can be

considered as the probability of transition from the state

of the jth spin to a state of its right neighbor. This means

that the values of Pj form the transition matrix of a bi-

nary Markov process, which has the form Eq. (54):

P9 5
eK1h1b e�K1a1b

e�K�a1b eK�h1b

� �
. (59)

The relationship between Ising model parameters and ps

and qs (or equivalently, p and M) can be determined

from the equality of P and P9:

K 5
1

4
ln

p
s
q

s

(1� p
s
)(1� q

s
)

� �
and (60)

h 5
1

2
ln

p
s

q
s

� �
, (61)

while

a 5
1

2
ln

1� p
s

1� q
s

� �
and (62)

b 5
1

4
ln[p

s
q

s
(1� p

s
)(1� q

s
)]. (63)

FIG. 7. As in Fig. 5, but for p 5 0.1.
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Note that in the symmetric case when p 5 q 5 1/2 both h

and a vanish. Recalling the relationship in Eq. (51) of ps

and qs to p and M, we can see that in the continuous limit

as M / ‘ the coupling constant K grows logarithmically

with M, while h decreases as M21.

A relationship, similar to that described above, be-

tween the parameters of our cellular cloud model and

those of the Ising model is likely to hold in the 2D case.

This opens the possibility of considering an extensive

arsenal of simulation methods and analytical techniques

FIG. 8. Construction of 2D cloud field example using the ‘‘mixing’’ process described in section 4b. For this sample, p 5 0.24 and a 15 3

15 cell grid is taken with a 20 3 20 cell subdivision. (top left) The initial discrete-model simulation (the cloud cover 0.28 is close to p). Cloud

field at the iteration steps (top right) 60, (bottom left) 120, and (bottom right) 180. The cloud cover value in the last step (0.16) is equal to

that derived from Eq. (48) for p.
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developed for the 2D Ising model for construction of

broken cloud field samples and to study their statistical

properties, which we leave for our future studies.

6. Discussion

We next discuss the differences between our approach

and that described in the series of papers by Astin et al.

(2001), van de Poll et al. (2006), and Settle and van de

Poll (2007), which are also devoted to the subject of cloud

transect statistics. In these studies the authors solve an in-

verse statistical problem: they use a fixed observed sample

(or a relatively small set of samples) and use Bayesian

statistics to estimate the underlying cloud model param-

eters, such as the cloud and gap exponents (equivalent

to Lc and Lg in our terminology) and the true (infinite

space) cloud fraction c
‘

5 L
c
/(L

c
1 L

g
). This estimation

results in statistical distributions of the model parame-

ters. These estimates, therefore, depend on the particular

structure of the observed sample, such as the numbers of

clouds and gaps, and when these numbers become large,

the probability density of, say, c
‘

becomes narrowly

peaked. Entirely clear and overcast samples require spe-

cial consideration in this approach. Conversely, our study

is focused on a forward problem, which means that we start

with fixed model parameters (such as Lc and Lg) and study

statistical properties of the ensemble of observations,

which consists of all possible realizations of the model (of

course, we have to use a limited but large subset of this

ensemble in numerical simulations). Thus, in our approach

we do not look for, for example, a distribution of c
‘

condi-

tioned by the observed sample (since c
‘

is predetermined

by the fixed model parameters); instead, we derive the dis-

tribution of the cloud cover values observed in the samples.

We also emphasize that in our computations of statis-

tics for finite samples we do not imply that the sky outside

the sample is clear (or cloudy). On the contrary, we as-

sume that our finite sample is taken at random from a

large, possibly infinite, statistically homogeneous sam-

ple. This means that the cloudy (clear) intervals at the

ends of a sample may be (and most likely are) parts of

clouds (gaps), rather than whole clouds (gaps) in that

large sample. An overcast (entirely clear) condition ap-

pears when a sample is taken from within a cloud (gap)

that is larger than its size. The partial clouds and gaps

are treated in our approach on an equal footing with the

whole ones. Note that the computations (presented in

appendix A) of cloud and gap length distributions for a

finite sample [Eqs. (6) and (7)] are made in the frame-

work of the discrete model, where cells are independent;

thus, the states of the cells outside the sample do not in-

fluence this distribution or its continuous limit [Eqs. (33)–

(36)]. In the computation of the cloud cover distribution

[Eqs. (40)–(45)], the choice of initial probabilities is

made based on the requirement of homogeneity of the

sample (the probability that the first subcell is cloudy is

the same as for any other subcell in the sample, i.e., equal

to the mean cloud cover; see appendixes C and D for

details). If we had instead postulated clear conditions

outside the sample (i.e., if the subcell to the left of the

first subcell in the sample was assumed to be always

clear), the initial probability would be u 5 qs. This prob-

ability is close to unity for a large enough M; thus, the ‘‘clear

outside’’ condition would create a bias toward clear be-

tween the beginning of the sample and the rest of it, thereby

making it statistically inhomogeneous. The homogeneity

condition appeared to be equivalent to the assumption that

samples are picked from an infinite field, since it has been

demonstrated that the mean cloud cover is the same in

finite and infinite cases. Our analytical results are con-

sistent with the statistics of our simulated examples, for

the construction of which the samples were taken from

the ends of sufficiently long records. Finally, all expres-

sions derived in this study are invariant under simul-

taneous interchange of p 4 q and cloud 4 gap. This

invariance contradicts any assumption of a fixed (e.g.,

clear) condition outside of the sample, since such a trans-

formation would change this condition to its opposite.

7. Concluding remarks

We have introduced two types of cellular models pro-

viding statistical descriptions of broken cloud-field prop-

erties. Computations were performed in 1D to derive

statistical distributions of clouds and gaps between them

by length, as well as of the cloud cover. The resulting

formulas also describe cloud field properties measured

along 1D transects in a 2D case. The first (discrete) model

describes statistics of cloud fields on a discrete grid, each

cell of which can be filled with cloud with a certain pre-

scribed probability p (which does not depend on the state

of the other cells in the sample). This basic model is too

simplistic for adequate description of realistic cloud fields,

since cloud-field parameters can take only discrete values

within its framework. The second (continuous) model is

an extension of the discrete model, and allows for con-

tinuous distributions of cloud/gap lengths and cloud frac-

tion. We show in Part II of this paper (Alexandrov et al.

2010, hereafter Part II) that this model is in agreement

with statistics of large-eddy cloud-field simulations. Note

that the continuous model is not equivalent to a discrete

model just with a larger number of smaller cells: the lat-

ter would produce rather homogeneous samples with no

clumpy clouds, such as seen in Figs. 2–8. In both discrete

and continuous models we assume that the observed cloud/

gap statistics are determined from samples of finite size.
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This means, in particular, that the samples within a cloud

(gap), which is larger than the sample size, are interpreted

as overcast (entirely clear) and are assigned cloud (gap)

lengths equal to the sample size and the cloud fraction of

1 (0). In the continuous model such samples contribute to

the singularities (d functions) in the length distributions

(at the length equal to the sample size) and in the cloud

cover distribution (at the fractions of 0 and 1).

If p does not change across the statistical ensemble,

the cloud/gap lengths distributions in our continuous

model are essentially exponential. The opposite ‘‘diverse

ensemble’’ situation with power-law clouds and gaps is

described in Part II of this paper. We should note that

according to Eqs. (27) and (29) the set of cellular model

parameters p and l is in a one-to-one correspondence

with the set of the exponents (Lc
21, Lg

21) of the cloud and

gap length distributions. This means that in the 1D case

some of our results, such as the cloud cover distribution

[Eqs. (40)–(45)], can also be obtained using the ap-

proach of Astin and Di Girolamo (1999). In this ap-

proach the exponential cloud/gap lengths distributions

are postulated, and the samples are constructed by se-

quential alternating drawing of clouds and gaps from

their respective distributions (without invocation of a

cellular structure). The situation, however, becomes quite

different when we attempt to construct a cloud field in the

2D case, where we lack the concept of a filling direction

necessary for a sequential method described above. We

currently do not have a rigorous continuous cellular model

in 2D case; however, our preliminary analysis (section 4b;

Fig. 8) shows that realistic examples of cloud fields in

this case can be constructed through an iterative process

starting at a realization of the discrete model. The cel-

lular structure is essential for such a procedure.

In Part II of this paper we present quantitative com-

parisons demonstrating that our model is generally in

good agreement with the statistics of the cloud fields

obtained using large-eddy simulations. We will also de-

scribe statistical properties of diverse cloud datasets ob-

tained from observations with wide temporal and/or

geographical coverage. Our future plans include de-

velopment of a 2D analog of the continuous model de-

scribed in this paper, as well as extension of the presented

techniques from binary (cloud/clear) datasets to those with

continuous values (such as LWP or cloud optical thick-

ness). The latter will be achieved through consideration of

multilayer binary models, where the statistics in each layer

depend on the states of the layers below.
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APPENDIX A

Discrete Cloud Length Distribution for Finite
Samples

To derive the cloud size distribution for a 1D lattice

with N cells, we compute statistical sums, to which cloud

field realizations contribute with the weights equal to

their probabilities. For each cloud length m , N we

consider two cases: when the cloud under consideration

is at the end of the observation interval

�� � � � � � � � �8�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m11 cells

� � � � � � � � � � � �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N�m�1 cells

(A1)

and the generic case when this cloud is inside the interval

� � � � � � � � � � � �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
i�2 cells

�8� � � � � � � � � �8|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i�1, i,..., i1m�1, i1m

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{m12 cells

� � � � � � � � � � � � �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N�i�m cells

. (A2)

Here i 5 2, . . . , N 2 m and the cells occupied by clouds

are depicted by bullets, while the clear cells are shown by

open circles. In the first case each realization contributes

to the statistical sum with the weight pmq 3 weight of the

last (N 2 m 2 1) cells. The sum of the weights of the

realizations of the last (N 2 m 2 1) cells is 1, since we sum

up the probabilities of all possible cases. Thus, the con-

tribution of the end-interval case (A1) is just pmq, and

there are two such cases (at each end of the interval).

Similarly, the contribution of a midinterval case (A2) is

pmq2, and we have (N 2 m 2 1) cases like this. Thus, the

statistical sum for the cloud of the size m , N is

S
m

5 2pmq 1 pmq2(N �m� 1), (A3)

while for the overcast cloud (m 5 N)

S
N

5 pN . (A4)

To find the normalization constant S in the cloud size

distribution we sum up all Sm, m 5 1, . . . , N:

S5 pN 1 �
N�1

m51
[2pmq 1 pmq2(N �m� 1)]

5 pN 1 q[2 1 q(N � 1)]�
N�1

m51
pm � q2 �

N�1

m51
mpm

5 p[1 1 q(N � 1)]. (A5)
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Here we use the standard formula (cf. Gradshteyn and

Ryzhik 1965) for finite geometric series and its derivative

with respect to p. Thus, the cloud size distribution takes

the form

n
c
(m) 5 1 1

1� qm

1 1 q(N � 1)

� �
q

p
pm (A6)

for m , N and

n
c
(N) 5

pN�1

1 1 q(N � 1)
(A7)

for m 5 N. By construction, nc is normalized by the

condition

�
N

m51
n

c
(m) 5 1. (A8)

To derive the mean cloud length (number of cells in the

cloud)

m
c
5 �

N

m51
mn

c
(m) 5 �

N

m50
mn

c
(m)

5 q 1 1
1

1 1 q(N � 1)

� �
�
N�1

m50
mpm�1

� q2

1 1 q(N � 1)
�
N�1

m50
m2pm�1 1

NpN�1

1 1 q(N � 1)
(A9)

we use the first and second derivatives (with respect to p)

of the finite geometric series formula, and, after some

algebraic transformations, obtain the following simple

expression for the cloud mean length:

m
c
5 q 1

p

N

h i�1

. (A10)

APPENDIX B

Cloud Length Statistics in the Continuous Model
with Finite Samples

a. Normalization condition

To verify that the cloud length distribution (36)

F
c
(x) 5 f

c
(x) 1 f o

c d(x� L), x 2 j0, Lj, (B1)

is properly normalized [according to Eq. (37)], we need

to compute the following integral

N
F

5

ðL

0

F
c
(x) dx 5

ðL

0

f
c
(x) dx 1 f o

c , (B2)

where

f
c
(x) 5

1

L
c

1 1
1� (x/L

c
)

1 1 a
c

� �
e�x/L

c

5
1

L
c

2 1 a
c

1 1 a
c

�
(x/L

c
)

1 1 a
c

� �
e�x/L

c (B3)

is the probability density (33) for x , L, and

f o
c 5

e�a
c

1 1 a
c

(B4)

is the overcast (x 5 L) contribution. Thus, the integral (B2)

takes the form

N
F

5
2 1 a

c

(1 1 a
c
)L

c

ðL

0

e�x/L
c dx� 1

(1 1 a
c
)L

c

ðL

0

x

L
c

e�x/L
c dx 1

e�a
c

1 1 a
c

, (B5)

which after the substitution t 5 x/Lc transforms into

N
F

5
2 1 a

c

1 1 a
c

ða
c

0

e�t dt� 1

1 1 a
c

ða
c

0

te�t dt 1
e�a

c

1 1 a
c

5
2 1 a

c

1 1 a
c

(1� e�a
c )� 1

1 1 a
c

[1� e�a
c (1 1 a

c
)] 1

e�a
c

1 1 a
c

5
2 1 a

c
� 1

1 1 a
c

5 1. (B6)

Thus, our singular density (B1) is properly normalized.

b. Computation of the mean

Computation of the mean cloud length for the density

(B1) is similar to that of the norm presented above. We

need to take the following integral

x 5
2 1 a

c

(1 1 a
c
)L

c

ðL

0

xe�x/L
c dx� 1

(1 1 a
c
)L

c

ðL

0

x2

L
c

e�x/L
c dx 1 L

e�a
c

1 1 a
c

, (B7)
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which after the substitution t 5 x/Lc (and using L 5 acLc in the last term) becomes

x 5 L
c

2 1 a
c

1 1 a
c

ða
c

0

te�t dt �
L

c

1 1 a
c

ða
c

0

t2e�t dt 1 L
c

a
c

1 1 a
c

e�a
c 5 L

c

2 1 a
c

1 1 a
c

[1� e�a
c (1 1 a

c
)]

�
L

c

1 1 a
c

f2� e�a
c [(1 1 a

c
)2

1 1]g1 L
c

a
c

1 1 a
c

e�a
c 5

L
c
a

c

1 1 a
c

5
L

1 1 (L/L
c
)

. (B8)

The integrals involved in this calculation can be found in

a standard table (e.g., Prudnikov et al. 1986). The above

expression is equivalent to Eqs. (38) and (39).

APPENDIX C

Cloud Cover Distribution in the Continuous Model

To derive the statistical distribution of cloud fraction in

continuous limit we use the approach outlined in section 3

[although the approach of Astin and Di Girolamo (1999)

may be computationally simpler, we prefer to use the

cellular model formalism in our derivations]. In the N-

cell box we subdivide each cell into M subcells (we will

take the limit M / ‘ to obtain the continuous case).

Each cell has size l, so the subcell size is l/M. The total

number of subcells and the total length of the sample

are, respectively,

n 5 NM and L 5 Nl. (C1)

We define the subcell filling probabilities ps and qs ac-

cording to Eq. (51) (note that ps, qs / 1 as M / ‘). We

remind the reader that to construct a realization of the

model, we move through our sample from left to right

using the following rule: if the ith subcell is cloudy we

use a draw with probability ps for cloudy and 1 2 ps for

clear to find the status of the (i 1 1)th subcell, and

conversely, if the ith subcell is clear we use a draw with

probability qs for clear and 1 2 qs for cloudy. The pro-

cedure continues until the end of the box is reached. In

general, the status of the first cell is selected by a draw

with an initial probability u to be cloudy (we also define

y 5 1 2 u), which is a free parameter of the model influ-

encing the structure of the sample. To determine this initial

probability we impose the following homogeneity con-

dition: the probability of the first cell to be cloudy is the

same as of any other cell in the sample (thus, equal to the

mean cloud cover).

a. Computation of the statistical sum

For each k cloudy subcells out of n subcells in the box

(c 5 k/n), we compute the statistical sum as expansion

over the number r 5 1, 2, 3, . . . of ‘‘quasi-cells’’ defined

as interchanging clear and cloudy intervals of arbitrary

length. For example, for r 5 1 we have two situations:

completely overcast

� � � � � � � � � � � 5 � � � , (C2)

with the weight

w
1

5 upn�1
s !M!‘

upN 5 ue�L/L
c , (C3)

and a completely clear sample

8 8 8 8 8 � � � 8 8 8 8 5 8� 8, (C4)

with the weight

w
0

5 yqn�1
s !M!‘

yqN 5 ye�L/Lg . (C5)

Note that these weights do not scale with M and there-

fore will contribute to the singular part of the probability

density. For r 5 2 we also have two cases:

� � � 8� 8 and 8� 8 � � � , (C6)

as well as for r 5 3:

� � � 8� 8 � � � and 8� 8 � � � 8� 8. (C7)

In general, for even r 5 2i the two cases are

� � � 8� 8 � � � � � � 8� 8 and (C8)

8� 8 � � � � � � 8� 8 � � � , (C9)

while for odd r 5 2i 1 1 they are

� � � 8� 8 � � � 8� 8 � � � and (C10)

8� 8 � � � � � � � � � 8� 8. (C11)

To construct the statistical sum we assign weights ps to

all cloudy subcells, except for those where the switch

from clear to cloudy happened (first subcells of cloudy

intervals), which are assigned with the weight (1 2 qs).
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Similarly, the first subcells of clear intervals are assigned

the weight (1 2 ps), while all other clear subcells will

enter the sum with weight qs. The first subcell of the

whole sample is assigned the initial probability weight u

if it is cloudy and y 5 1 2 u if it is clear (these weights are

free parameters to be determined from additional con-

straints described further below).

For each of the realization types (‘‘diagrams’’) (C8)–

(C11), the number of switch subcells of both kinds

(cloud to clear and clear to cloud) is fixed, as are the

total numbers of cloudy and clear subcells [k and (n 2

k), respectively], while the lengths of particular clear

and cloudy intervals may vary. Thus, the weight of each

diagram is multiplied by the number of ways the cloudy

and clear subcells (only those that are not switch points)

can be placed into the respective sets of intervals. To

compute this number we solve a simple combinatorial

problem about the number of ways to put m identical

balls into n numbered boxes. This problem can be

solved by treating the balls and the walls separating the

boxes [(n 2 1) of them] on equal footing (e.g., con-

sidering the walls as balls of a different color), and the

solution is

Kn
m 5

(n 1 m� 1)!

(n� 1)!m!
5

n 1 m� 1

n� 1

� �
. (C12)

Let us start with the diagram (C8) for r 5 2i. For

this diagram we have (i 2 1) cloudy switch subcells

(switching from clear to cloud) and i clear switch sub-

cells (switching from cloud to clear). We also have k 2

i 1 1 free (nonswitch) cloudy subcells that should be

distributed between the i intervals and (n 2 k 2 i) free

clear subcells also to be put into i intervals. Thus the

weight of the first diagram will be

uKi
k�iK

i
n�k�i(1� q

s
)i�1(1� p

s
)ipk�i

s qn�k�i
s . (C13)

Similarly, for diagram (C9) we have i cloudy and i clear

intervals, i cloudy and (i 2 1) clear switch subcells, and

(k 2 i) cloudy and (n 2 k 2 i 1 1) clear free subcells.

Thus, the weight of this diagram is

yKi
k�iK

i
n�k�i(1� q

s
)i(1� p

s
)i�1pk�i

s qn�k�i
s . (C14)

For the first ‘‘odd’’ diagram (C10), we have (i 1 1) cloudy

and i clear intervals, i cloudy and i clear switch subcells,

and (k 2 i) cloudy and (n 2 k 2 i) clear free subcells. This

leads to the weight

uKi11
k�i�1Ki

n�k�i(1� q
s
)i(1� p

s
)ipk�i�1

s qn�k�i
s . (C15)

The second odd diagram (C11) has i cloudy and i 1 1

clear intervals, and, as well as the first odd diagram, i

cloudy and i clear switch subcells, and (k 2 i) cloudy and

(n 2 k 2 i) clear free subcells. Thus, its weight is

yKi
k�iK

i11
n�k�i�1(1� q

s
)i(1� p

s
)ipk�i

s qn�k�i�1
s . (C16)

Next we sum up these weights for i running from 1 (we

consider the all-clear/overcast case r 5 1 separately) to

min(k, n 2 k). The upper limit goes to infinity with the

cell subdivision number M; thus, we can replace the fi-

nite sums by the infinite series. Let us first compute the

coefficients K in the limit of k, (n 2 k) / ‘. To avoid

repetition of computations similar for the coefficients K

in Eqs. (C13)–(C16) we denote by m the number going

to infinity in the continuous limit [k or (n 2 k)], and by

j the number that remains finite (combinations of 6i and

61). Then, the majority of the coefficients K above have

the form

Ki
m1 j 5

m 1 i 1 j� 1

i� 1

 !

5 [(m 1 i 1 j� 1)B(i, m 1 j 1 1)]�1

’ [mB(i, m)]�1
’ [mG(i)m�i]�1

5
mi�1

(i� 1)!
.

(C17)

Here we represent the binomial coefficient (15) in terms

of beta function and use the asymptotic formula for the

latter:

B(x, y � 1) ’ G(x)y�x. (C18)

Similarly, we obtain that

Ki11
m1 j 5

mi

i!
. (C19)

Thus, the coefficients in Eqs. (C13)–(C16) can be ex-

pressed as follows:

Ki
k�i 5

ki�1

(i� 1)!
, Ki

n�k�i 5
(n� k)i�1

(i� 1)!
, (C20)

Ki11
k�i�1 5

ki

i!
, Ki11

n�k�i�1 5
(n� k)i

i!
. (C21)

Because of the similarity of the structure of the terms

(C13) and (C14) of the sums corresponding to the two

even diagrams (C8) and (C9), it is convenient to write

these sums together as
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S
0

5 [u(1� p
s
) 1 y(1� q

s
)]�

‘

i51
Ki

k�iK
i
n�k�i(1� q

s
)i�1(1� p

s
)i�1pk�i

s qn�k�i
s

5 [u(1� p
s
) 1 y(1� q

s
)]pk�1

s qn�k�1
s �

‘

i51

ki�1

(i� 1)!

(n� k)i�1

(i� 1)!

(1� q
s
)i�1(1� p

s
)i�1

pi�1
s qi�1

s

5 [u(1� p
s
) 1 y(1� q

s
)]pk�1

s qn�k�1
s �

‘

i50

[Pk(n� k)]i

(i!)2
. (C22)

Here we have changed the summation index i / (i 2 1)

and introduced the notation

P 5
(1� q

s
)(1� p

s
)

p
s
q

s

. (C23)

In a similar way we compute the sum of the terms (C15)

corresponding to the first odd diagram (C10)

S
1a

5 u�
‘

i51
Ki11

k�i�1Ki
n�k�i(1� q

s
)i(1� p

s
)ipk�i�1

s qn�k�i
s

5 u�
‘

i51

ki(n� k)i�1

i!(i� 1)!
(1� q

s
)i(1� p

s
)ipk�i�1

s qn�k�i
s

5 ukpk�1
s qn�k

s P�
‘

i50

[Pk(n� k)]i

i!(i 1 1)!
, (C24)

and the sum of the terms (C16) corresponding to the

second odd diagram (C11)

S
1b

5 y�
‘

i51
Ki

k�iK
i11
n�k�i�1(1� q

s
)i(1� p

s
)ipk�i

s qn�k�i�1
s

5 y�
‘

i51

ki�1(n� k)i

(i� 1)!i!
(1� q

s
)i(1� p

s
)ipk�i

s qn�k�i�1
s

5 y(n� k)pk
s qn�k�1

s P�
‘

i50

[Pk(n� k)]i

i!(i 1 1)!
. (C25)

Thus, the sum of the two odd diagrams becomes

S
1

5 S
1b

1 S
1b

5 [ukp�1
s 1 y(n� k)q�1

s ]

3 pk
s qn�k

s P�
‘

i50

[Pk(n� k)]i

i!(i 1 1)!
. (C26)

The series entering Eqs. (C22), (C24), and (C25) are

related to representations of the modified Bessel func-

tions on the orders 0 and 1 (cf. Gradshteyn and Ryzhik

1965):

I
0
(z) 5 �

‘

i50

(z/2)2i

(i!)2
and (C27)

I
1
(z) 5 �

‘

i50

(z/2)2i11

i!(i 1 1)!
. (C28)

In particular,

�
‘

i50

zi

(i!)2
5 I

0
(2

ffiffiffi
z
p

) and (C29)

�
‘

i50

zi

i!(i 1 1)!
5

I
1
(2

ffiffiffi
z
p

)ffiffiffi
z
p . (C30)

In Eqs. (C22) and (C26) the argument z of Eqs. (C29)

and (C30) is

z 5 Pk(n� k) 5
(1� q

s
)(1� p

s
)

p
s
q

s

k(NM � k). (C31)

In the limit M / ‘

p
s
5 p1/M ! 1, and q

s
5 q1/M ! 1, (C32)

while, as we have shown in Eq. (23),

1� p
s
! �lnp

M
5�lnp

l

l

M
5

dx

L
c

5
L

L
c

dc 5 a
c
dc and

(C33)

1� q
s
!�lnq

M
5

dx

L
g

5
L

L
g

dc 5 a
g
dc, (C34)

where

dx 5
l

M
and dc 5

dx

L
(C35)

are the respective differentials of total cloud (or gap) length

and cloud cover, and we have introduced the notation

a
c
5

L

L
c

5�ln(pN) and a
g

5
L

L
g

5�ln(qN). (C36)
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Using these results we find the limit value of z:

z ;
lnp

M

lnq

M
k(NM � k) 5

lnp

l

lnq

l

kl

M
Nl � kl

M

� �

5
1

L
c
L

g

x(L� x) 5
L2

L
c
L

g

c(1� c)

5 a
c
a

g
c(1� c). (C37)

Here l is the cell size,

x 5 kl
s
5

kl

M
(C38)

is the total cloud length in the sample, and c 5 k/n 5 x/L

is the cloud cover. Using Eqs. (C33)–(C37), and also

noticing that

pk
s 5 pk/M 5 e(lnp/l)(kl/M) 5 e�x/L

c 5 e�cL/L
c 5 e�a

c
c

and

qn�k
s 5 qN�(k/M) 5 e(lnq/l)[Nl�(kl/M)] 5 e�(L�x)/L

g 5 e�(1�c)L/L
g

5 e�ag(1�c),

we can derive the continuous forms of Eqs. (C22) and

(C26). The sum corresponding to the even diagrams

takes the form of the probability density

dS
0

5 [a
c
u 1 a

g
y]e�[a

c
c1a

g
(1�c)]I

0
(2

ffiffiffi
z
p

) dc. (C39)

The sum (C26) corresponding to the odd diagrams can

be written as

S
1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� p

s
)(1� q

s
)

p
s
q

s

s
ukp�1

s 1 y(n� k)q�1
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(n� k)
p pk

s qn�k
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk(n� k)

p �
‘

i50

[Pk(n� k)]i

i!(i 1 1)!
. (C40)

Now, using Eqs. (C28), (C33)–(C37), (C38), and (C40)

and observing that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� p

s
)(1� q

s
)

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnplnq

p
M

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnp

l

lnq

l

r
l

M

5
dxffiffiffiffiffiffiffiffiffiffiffi
L

c
L

g

q 5
Ldcffiffiffiffiffiffiffiffiffiffiffi
L

c
L

g

q 5
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
dc

(C41)

and

uk 1 y(n� k)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(n� k)

p 5
uk/M 1 y(N � k/M)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(k/M)(N � k/M)
p

5
ukl/M 1 y(Nl � kl/M)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(kl/M)(Nl � kl/M)
p

5
ux 1 y(L� x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x(L� x)
p 5

uc 1 y(1� c)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c(1� c)

p , (C42)

we can write the continuous limit of the odd diagrams as

dS
1

5 [uc 1 y(1� c)]e�[a
c
c1a

g
(1�c)] ffiffiffiffiffiffiffiffiffi

a
c
a

g

p I
1
(2

ffiffiffi
z
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c(1� c)

p dc

5 [uc 1 y(1� c)]e�[a
c
c1a

g
(1�c)]a

c
a

g

I
1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc,

(C43)

where z is defined by Eq. (C37). Thus, the expression for

the total density can be written in the form

dS 5 dS
0

1 dS
1

5 S(c) dc, (C44)

where

S(c) 5 e�[a
c
c1a

g
(1�c)] (a

c
u 1 a

g
y)I

0
(2

ffiffiffi
z
p

)

�

1 a
c
a

g
[uc 1 y(1� c)]

I
1
(2

ffiffiffi
z
p

)ffiffiffi
z
p

�
. (C45)

b. Normalization condition

Being a probability density S(c) by construction should

satisfy the normalization condition

ð1

0

S(c) dc 1 w
0

1 w
1

5 1, (C46)

where w0 and w1 are the respective weights (C5) and

(C3) of all-clear and overcast samples, which in the no-

tation of Eq. (C36) have the form

w
0

5 ye�a
g and w

1
5 ue�a

c . (C47)

An essential step of verifying this condition is taking the

integral of S(c) between 0 and 1. To do this it is conve-

nient to split the integral into three parts:

N 5

ð1

0

S(c) dc 5N
0

1N
1

1N
2
, (C48)

where
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N
0

5 (a
c
u 1 a

g
y)

ð1

0

e�[a
c
c1a

g
(1�c)]I

0
(2

ffiffiffi
z
p

) dc, (C49)

N
1

5 ya
c
a

g

ð1

0

e�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc, (C50)

and

N
2

5 (u� y)a
c
a

g

ð1

0

ce�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc, (C51)

and to use the following substitution:

t 5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c(1� c)

p
, (C52)

which runs from 0 to 1 when c2 [0, 1/2] and back from 1 to

0 when c 2 [1/2, 1]. Thus, c can be expressed through t as

c 5
1

2
7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

, (C53)

where the minus sign is used when c , 1/2, and the plus

sign is used when c . 1/2, and the integral over t includes

both terms. We also have

1� c 5
1

2
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

, (C54)

a
c
c 1 a

g
(1� c) 5

a
c
1 a

g

2
7

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

, (C55)

uc 1 y(1� c) 5
u 1 y

2
7

u� y

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

, (C56)

2
ffiffiffi
z
p

5 t
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
, and (C57)

dc 5 6
t dt

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p . (C58)

Substituting the above expressions into Eq. (C45) leads

to the following:

N
0

5 (a
c
u 1 a

g
y)e�(a

c
1a

g
)/2

3

ð1

0

tffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
0
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt,

(C59)

N
1

5 2y
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(ac1ag)/2

3

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

3 I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt, and (C60)

N
2

5N
2a

1N
2b

, (C61)

where

N
2a

5 (u� y)
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(a

c
1a

g
)/2

3

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt

is similar to N 1, and

N
2b

5 (y � u)
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(a

c
1a

g
)/2

3

ð1

0

sinh
a

c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt. (C62)

We can combine two of the above integrals into one:

N
3

5N
1

1N
2a

5
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(a

c
1a

g
)/2

3

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt.

(C63)

To compute this expression we use a table integral

(Prudnikov et al. 2002)

ða

0

cosh(b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p I

n
(gx) dx

5
p

2
I

n/2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
1 ab

2

 !
I

n/2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
� ab

2

 !

(C64)

[note that there is a misprint in Prudnikov et al. (2002):

the factor 1/2 in the arguments of both Bessel functions

are missing]. In our case (n 5 1, a 5 1) this expression

can be simplified using the relation [cf. Gradshteyn and

Ryzhik (1965)]

I
1/2

(z) 5

ffiffiffiffiffiffi
2

pz

r
sinhz, (C65)

resulting in

J
1

5

ð1

0

cosh(b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p I

1
(gx) dx

5
2

g
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
1 b

2

 !
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
� b

2

 !
.

(C66)

Using this formula with

b 5
a

c
� a

g

2
, g 5

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

q
5

a
c
1 a

g

2
,

(C67)
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we find that Eq. (C63) for N 3 takes the following form:

N
3

5 2e�(a
c
1a

g
)/2 sinh

a
c

2
sinh

a
g

2

5 e�(a
c
1a

g
)/2 cosh

a
c
1 a

g

2

� �
� cosh

a
c
� a

g

2

� �� �
.

(C68)

In the important case of p 5 1/2 when ac 5 ag [ a, it looks

even simpler:

N
3

5 2e�a sinh2 a

2
5 e�a(cosha� 1). (C69)

To take the integral (C62) for N 2b we notice that the

integral (C66) can be written in the form

J
1

5
1

g
(cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

q
� coshb), (C70)

which after differentiation with respect to b yields the

following formula:

›J
1

›b
5

ð1

0

sinh(b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

)I
1
(gx) dx

5
1

g

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

q
� sinhb

 !
, (C71)

allowing us to computeN 2b using the substitution (C67):

N
2b

5 (y � u)e�(a
c
1a

g
)/2

a
c
� a

g

a
c
1 a

g

sinh
a

c
1 a

g

2

� �"

� sinh
a

c
� a

g

2

� �#
. (C72)

Unfortunately we cannot find a table integral corre-

sponding toN 0 of a general case. Thus, we guess the form

of the solution and then verify the result numerically. As

a basis for our guess we take the solution in the specific

case of p 5 1/2 (ac 5 ag [ a), which can be found using

another table integral (Prudnikov et al. 2002):

N
0

5 ae�a

ð1

0

tffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p I

0
(at) dt

5 e�a sinha 5 2e�a sinh
a

2
cosh

a

2
. (C73)

A comparison of Eqs. (C69) and (C68) suggests that the

generalization of Eq. (C73) to the case of an arbitrary p

may have the following form:

N
0

5 2
a

c
u 1 a

g
y

a
c
1 a

g

e�(ac1ag)/2 sinh
a

c
1 a

g

2

� �

5 2
a

c
u 1 a

g
y

a
c
1 a

g

e�(ac1ag)/2 sinh
a

c

2
cosh

a
g

2

�

1 cosh
a

c

2
sinh

a
g

2

�
. (C74)

Extensive numerical tests verify that this formula is in-

deed correct, which allows us to compute the total in-

tegral (C48):

N 5N
0

1N
2b

1N
3

5 e�(a
c
1a

g
)/2 2

a
c
u 1 a

g
y

a
c
1 a

g

sinh
a

c
1 a

g

2

� �"
1 (y � u)

a
c
� a

g

a
c
1 a

g

sinh
a

c
1 a

g

2

� �

1 (u� y) sinh
a

c
� a

g

2

� �
1 cosh

a
c
1 a

g

2

� �
� cosh

a
c
� a

g

2

� �#
5 1� ue�a

c � ye�a
g . (C75)

Thus, the normalization condition (C46) holds for any

initial probabilities u and y.

c. General form of the singular density

The complete cloud cover singular density that is

normalized by the condition

ð1

0

F
cf

(c) dc 5 1 (C76)

takes the form

F
cf

(c) 5 f
cf

(c) 1 f
(0)
cf d(c) 1 f

(1)
cf d(1� c) (C77)

with

f
cf

(c) 5 e�[a
c
c1a

g
(1�c)] (a

c
u 1 a

g
y)I

0
(Z)

�

1 2a
c
a

g
[uc 1 y(1� c)]

I
1
(Z)

Z

�
, (C78)

where Z is defined as

Z 5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c
a

g
c(1� c)

q
(C79)

and
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f
(0)
cf 5 ye�ag and f

(1)
cf 5 ue�a

c . (C80)

APPENDIX D

Mean Cloud Cover in the Continuous Model

To compute the mean cloud cover

c 5

ð1

0

cF
cf

(c) dc 5

ð1

0

cf
cf

(c) dc 1 f
(1)
cf (D1)

for the singular density (C77), we use the same sub-

stitution (C52) that was used for computing the norm.

Under this substitution c is expressed according to Eq.

(C53); as for the normalization, we express the integral

in Eq. (D1) as a sum of three terms:

M5

ð1

0

cf
cf

(c) dc 5M
0

1M
1

1M
2
, (D2)

where

M
0

5 (a
c
u 1 a

g
y)

ð1

0

ce�[a
c
c1a

g
(1�c)]I

0
(2

ffiffiffi
z
p

) dc, (D3)

M
1
5 ya

c
a

g

ð1

0

ce�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc, and (D4)

M
2

5 (u� y)a
c
a

g

ð1

0

c2e�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc. (D5)

Under the substitution (C53)

c2 5 c� t2

4
; (D6)

thus, we can writeM2 as

M
2

5M
2a

1M
2b

, (D7)

where

M
2a

5 (u� y)a
c
a

g

ð1

0

ce�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)ffiffiffi
z
p dc and

(D8)

M
2b

5
y � u

2
a

c
a

g

ð1

0

t2e�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)

2
ffiffiffi
z
p dc. (D9)

Also,M2a is similar toM1, so the two can be combined

into

M
3

5M
1

1M
2a

5 ua
c
a

g

ð1

0

ce�[a
c
c1a

g
(1�c)] I

1
(2

ffiffiffi
z
p

)

2
ffiffiffi
z
p dc.

(D10)

After the substitution (C53), we have

M
0

5 (a
c
u 1 a

g
y)e�(a

c
1a

g
)/2

ð1

0

t dt

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� ��

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

sinh
a

c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� ��

I
0
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
)

5
1

2
N

0
�R

0
, (D11)

where N 0 is defined by Eqs. (C59) and (C74), while

R
0

5
a

c
u 1 a

g
y

2
e�(a

c
1a

g
)/2

3

ð1

0

t sinh
a

c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
0
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
) dt. (D12)

Similarly,

M
3

5 u
ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(a

c
1a

g
)/2

3

ð1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� ��

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

sinh
a

c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� ��

I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
)

5 uN
3
� u

y � u
N

2b
,

whereN 3 is defined by Eqs. (C63) and (C68), whileN 2b

is given by Eqs. (C62) and (C72). Here M2b takes the

following form:
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M
2b

5
y � u

2

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
e�(a

c
1a

g
)/2

3

ð1

0

t2 dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p cosh

a
c
� a

g

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p� �

I
1
(t

ffiffiffiffiffiffiffiffiffi
a

c
a

g

p
).

To compute the integral for R0 we need to extend

[reversing the substitution (C67)] our guess (C74) to the

following relation:

J
0

5

ð1

0

x
cosh(b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p I

0
(gx) dx 5

sinh(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 1 g2
p

(D13)

(again conducting a numerical verification). Taking a par-

tial derivative of it with respect to b, we come to the

following:

›J
0

›b
5

ð1

0

xsinh(b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

)I
0
(gx) dx

5
b

b2 1 g2
cosh(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
)� sinh(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 1 g2
p

" #
.

(D14)

Thus, using the substitution (C67), we can write R0 as

R
0

5
(a

c
u 1 a

g
y)(a

c
� a

g
)

(a
c
1 a

g
)2

e�(a
c
1a

g
)/2 cosh

a
c
1 a

g

2

� ��

� 2

a
c
1 a

g

sinh
a

c
1 a

g

2

� �#
. (D15)

To take the integral forM2b we again use Eq. (D13).

Differentiating Eq. (D13) with respect to g and noticing

that (cf. Gradshteyn and Ryzhik 1965)

I
1
(x) 5

dI
0
(x)

dx
, (D16)

we obtain the following relation:

›J
0

›g
5

ð1

0

x2 cosh(b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p I

1
(gx) dx

5
g

b2 1 g2
cosh(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
)� sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 g2

p
" #

.

(D17)

Note that the rhs of Eq. (D13) is symmetric with respect

to the b 4 g interchange, so the result of Eq. (D17) can

be also obtained from Eq. (D14) simply by interchang-

ing these variables. The expression for M2b now takes

the form

M
2b

5 2
(y � u)a

c
a

g

(a
c
1 a

g
)2

e�(a
c
1a

g
)/2 cosh

a
c
1 a

g

2

� ��

� 2

a
c
1 a

g

sinh
a

c
1 a

g

2

� �#
, (D18)

and we can collect the terms in Eq. (D2):

M5
1

2
N

0
�R

0
1 uN

3
� u

y � u
N

2b
1M

2b
. (D19)

It is convenient to introduce the notation

a
1

5
a

c
1 a

g

2
and a�5

a
c
� a

g

2
, (D20)

in which

M
2b
�R

0
5�

a
c
u� a

g
y

2a
1

e�a
1 cosh(a

1
)�

sinh(a
1

)

a
1

� �
,

1

2
N

0
5

a
c
u 1 a

g
y

2a
1

e�a
1 sinh(a

1
),

uN
3

5 ue�a
1[cosh(a

1
)� cosh(a�)], and

u

y � u
N

2b
5 ue�a

1

a�
a

1

sinh(a
1

)� sinh(a�)

� �
,

and after some algebraic transformations we obtain

M5
a

g

2a
1

� ue�a
c 1

a
c
u� a

g
y

4a2
1

(1� e�2a
1). (D21)

Now we can write the expression for the mean cloud

cover:

c 5M1 ue�a
c 5

a
g

2a
1

1
a

c
u� a

g
y

4a2
1

(1� e�2a
1) (D22)

or, explicitly,

c 5
a

g

a
c
1 a

g

1
a

c
u� a

g
y

(a
c
1 a

g
)2

[1� e�(a
c
1a

g
)]. (D23)

Note that in the limiting case p 5 0 (no cloud) Lc 5 0 and

ac 5 ‘, while Lg 5 ‘ and ag 5 0, and it is easy to see that

c 5 0. In the opposite limit p 5 1 (completely overcast)

Lc 5 ‘ and ac 5 0, while Lg 5 0 and ag 5 ‘, so

c 5 1/2 1 1/2 5 1.

a. Infinite sample

In the limit L / ‘ when the sample length is consid-

erably larger than the mean sizes of clouds and gaps (here

we assume that 0 , p , 1, so that Lc and Lg are finite), the
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distribution (C77) becomes very narrow, making both

completely clear and overcast cases impossible:

f
(0)
cf 5 f

(1)
cf 5 0 (D24)

(this follows from ac, ag / ‘). Equation (D23) for the

mean cloud fraction takes the form

c
‘

5
a

g

a
c
1 a

g

5
L

c

L
c
1 L

g

5
lnq

lnp 1 lnq
, (D25)

regardless of the values of the initial probabilities u

and y.

The density (C78) in this limiting case can be simpli-

fied by using the asymptotic representation of Bessel

functions (Gradshteyn and Ryzhik 1965):

I
n
(x! ‘) ’

exffiffiffiffiffiffiffiffiffi
2px
p , (D26)

which is independent of the index n:

f
cf

(c) 5 (a
c
a

g
)1/4e�[

ffiffiffiffiffi
a

c
c

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
a

g
(1�c)

p
]2 A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c(1� c)

p
1 [uc 1 y(1� c)]

2
ffiffiffiffi
p
p

[c(1� c)]3/4
, (D27)

where

A 5
a

c
u 1 a

g
yffiffiffiffiffiffiffiffiffi

a
c
a

g

p 5 u

ffiffiffiffiffiffi
L

c

L
g

s
1 y

ffiffiffiffiffiffi
L

g

L
c

s
. (D28)

The last factor of Eq. (D27) does not contain L, while ac

and ag } L, and therefore the argument of the exponent

is also proportional to L. Thus, if for some c this argu-

ment is not equal to 0, then fcf(c) 5 0, since the exponent

declines with L / ‘ faster than the power-law factor

(acag)1/4 } L1/2 grows. And when this argument equals 0

we have fcf(c) 5 ‘. This happens when

a
c
c 5 a

g
(1� c), (D29)

that is, when c 5 c
‘

. These observations, together with

the normalization condition (C76) and Eq. (D24), imply

that in the limit of an infinite sample the singular density

for cloud cover does not depend on u or y and has the

form

F
cf

(c) [ f
cf

(c) 5 d(c� c
‘

), (D30)

where c
‘

is defined by Eq. (D25).

b. Choice of initial probabilities

As discussed above, the initial probabilities u and y

are free parameters and are specified by the way in

which the samples are generated. However, in a realistic

situation when the samples are taken at random from

a long record, we may assume a certain homogeneity of

the cloud pattern. This means that the probability u of

the first subcell to be cloudy should be the same as the

probability of any subcell to be cloudy, which is equal to

the mean cloud fraction c. Thus, we can use Eq. (D23)

and the condition

u 5 c (D31)

to determine the value of u from the equation

u 5
a

g

2a
1

1
a

c
u� a

g
y

4a2
1

(1� e�2a
1), (D32)

which, using y 5 1 2 u, can be written as

u 1� 1� e�2a
1

2a
1

� �
5

a
g

2a
1

1� 1� e�2a
1

2a
1

� �
.

We notice that e�2a
1 . 1� 2a

1
for all a1 6¼ 0 (since the

line y 5 1 2 x is tangent to the graph of y 5 e2x at x 5 0),

while a1 5 0 is unphysical; thus, the only solution of Eq.

(D31) is

u 5
a

g

2a
1

5
a

g

a
c
1 a

g

5 c
‘

; (D33)

that is, the probability u is equal to mean cloud cover for

an infinite sample (D25). Correspondingly,

y 5 1� u 5
a

c

a
c
1 a

g

. (D34)

Substituting Eqs. (D33) and (D34) into Eq. (D23), we see

that, indeed, the second term in this expression vanishes,

so the mean cloud cover becomes equal to its limiting value

c 5 c
‘

5
a

g

a
c
1 a

g

5
L

c

L
c
1 L

g

(D35)

and does not depend on the sample size. Unlike its

mean, however, the shape of the cloud cover distribution

does depend on L. Substituting Eqs. (D33) and (D34)
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into Eqs. (C78) and (C80) gives Eqs. (40)–(45) for the

components of the singular density (C77).
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