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ABSTRACT

Cellular statistical models are designed to provide a simple two-parameter characterization of the structure

of broken cloud fields described through distributions of cloud fraction and of chord lengths for clouds and

clear gaps. In these analytical models cloud fields are assumed to occur on a semiregular grid of cells (which

can be vaguely interpreted as atmospheric convective cells). In a simple, discrete cell model, cell size is fixed

and each cell can either be completely filled with cloud with some probability or remain empty. Extending the

discrete model to a continuous case provides more realism by allowing arbitrary cloud and gap sizes. Here the

continuous cellular model is tested by comparing its statistics with those from large-eddy simulations (LES) of

marine boundary layer clouds based on case studies from three trade-cumulus field projects. The statistics

largely agree with some differences in small sizes approaching the LES model grid spacing. Exponential

chord-length distributions follow from the assumption that the probability of any cell being cloudy is constant,

appropriate for a given meteorological state (narrow sampling). Relaxing that assumption, and instead

allowing this probability to have its own distribution, leads to a power-law distribution of chord lengths,

appropriate to a broader sample of meteorological states (diverse sampling).

1. Introduction

Well-defined cellular structures are often observed

in cumulus and stratocumulus cloud fields. The study by

Wielicki and Welch (1986) based on four Landsat sat-

ellite scenes demonstrated that small (1 km in diameter)

fair-weather cumulus clouds can consist of several cells

with sizes ranging from approximately 250 m to 1 km.

The aircraft-based observations by Nicholls (1989) indi-

cated chord distributions of convective cells in stratocu-

mulus cloud fields consistent with hexagonal cell structures

with an average cell diameter around half of the depth of

the planetary boundary layer (i.e., diameters ranging from

200 to 600 m).

In Part I of this paper (Alexandrov et al. 2010, here-

after Part I) two cellular statistical models (CSMs) of

cloud fields were documented. In the first, ‘‘discrete’’

model, our approach is similar to that in percolation theory

(Isichenko 1992), in which we consider a cloud-embedded

layer of the atmosphere as a 1D or 2D horizontal lattice

with cells (of size l) that are either cloudy with probability

p or clear with probability q 5 1 2 p. One may loosely

think of these cells as atmospheric convective cells. In

this study, however, the cellular structure of cloud fields

is used as an abstract modeling concept, whose physical

nature we do not pursue. A similar concept in a different

form was used in the statistical cloud model of Nagel and

Raschke (1992). We have extended this approach in our

model by allowing clouds to take arbitrary size and
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shape (instead of being clusters of several square cells),

while retaining the basic assumption of the discrete-cell

prototype that the probability of a cell of size l being

fully cloudy is p. This extension leads to our second,

‘‘continuous’’ model, which is formulated to better de-

scribe statistics of real cloud fields. The statistics of this

model, such as distributions of the cloud fraction and

chord length distributions of clouds and gaps between

them, can be computed for the 1D case. Such 1D models

are also applicable to 1D transects (chords) of 2D cloud

fields (e.g., Sánchez et al. 1994; Astin and Di Girolamo

1999; Byrne 2005). Part I also presents an iterative pro-

cedure that allows for construction of a continuous 2D

cloud field from a realization of the discrete model; here

we consider only 1D models.

Computationally inexpensive stochastic cloud models

based on satellite, aircraft, or ground measurements have

been used to generate cloud fields resembling observa-

tions (e.g., Evans and Wiscombe 2004; Hogan and Kew

2005; Venema et al. 2006; Prigarin and Marshak 2009).

Some stochastic models generate cloud fields with in-

ternal cloud structure (e.g., Schertzer and Lovejoy 1987;

Cahalan 1994; Marshak et al. 1994; Schmidt et al. 2007),

while others treat cloud fields as a binary mixture of

cloudy and clear areas (e.g., Su and Pomraning 1994;

Zuev and Titov 1995; Prigarin et al. 2002). In contrast to

their statistical counterparts, dynamical cloud models

use a more first-principles approach and are more phys-

ically based. The objective of this study is to demonstrate

that our simple stochastic model can generally reproduce

the statistics of shallow, broken cloud fields obtained

from large-eddy simulation (LES). In the comparisons

here we use LES results from case studies of shallow,

maritime convection based on observations from three

trade-cumulus field projects: the Atlantic Trade Wind

Experiment (ATEX; Augstein et al. 1973), the Barbados

Oceanographic and Meteorological Experiment (BOMEX;

Nitta and Esbensen 1974), and Rain in Cumulus over the

Ocean (RICO; Rauber et al. 2007).

Several studies have been published describing cloud

chord statistics based on ground-based measurements

(e.g., Lane et al. 2002; Berg and Kassianov 2008) as well

as aircraft and satellite data (e.g., Plank 1969; Cahalan

and Joseph 1989; Joseph and Cahalan 1990; Rodts et al.

2003). Some of these studies—notably for this study, those

restricted to fair-weather cumulus fields—report expo-

nential cloud and gap chord length distributions (Astin

and Latter 1998; Lane et al. 2002), while others find power-

law distributions (Cahalan and Joseph 1989; Koren et al.

2008). Here we argue that the type of the observed cloud

chord distribution depends not only on the dominant

cloud type during an observation period, but also on the

size and diversity of the sample. Cloud properties in our

statistical model are described by two parameters: l and

p. In Part I of this paper we demonstrate that the cloud

and gap length distributions are exponential if p and l (or

equivalently the mean cloud and gap lengths) are uniform

for the whole sample. However, as we show below, in the

case of a diverse sample, in which p is not fixed but rather

has a statistical distribution of its own, the cloud and gap

length distributions instead follow a power law. Such

power-law distributions are applicable to datasets with

large coverage (spatial, temporal, or both) that include

a diversity of cloud types and atmospheric conditions.

In Section 2 we present an overview of our cellular

cloud models, in section 3 we compare statistics from our

continuous cellular model with those from large-eddy

simulations, and in section 4 we discuss power-law cloud

fields. We conclude with a summary in section 5.

2. Cellular models of cloud fields

In Part I of this paper we describe two types of cellular

models of broken cloud fields: 1) a simple discrete lattice

model and 2) its continuous generalization. Below we

present a brief overview of those models.

a. Discrete model

In the discrete cellular model we consider a 1D lattice,

each cell of which can be occupied by cloud with prob-

ability p (0 , p , 1) or remain clear with probability q 5

1 2 p. We define a cloud of size m as a sequence of m

neighboring cloudy cells separated from other clouds by

at least one clear cell at each end. If the lattice is infinite,

the statistical distribution of clouds by size in this model

is geometric:

n
c
(m) 5 qpm�1, (1)

m 5 1, 2, 3, . . . , with the mean

m
c
5

1

q
. (2)

We show in Part I that the observed cloud and gap length

statistics are influenced by the sample size, especially for

relatively large clouds and gaps. For finite samples the

model also needs to take into account overcast clouds

(i.e., those with length equal to or exceeding the sample

size) as well as entirely clear samples, cases that do not

exist on an infinite lattice. In the case of a finite sample

consisting of N cells, the cloud length distribution takes

the form

n
c
(m) 5 1 1

1� qm

1 1 q(N � 1)

� �
qpm�1 (3)
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for m , N, while

n
c
(N) 5

pN�1

1 1 q(N � 1)
(4)

for m 5 N. The mean cloud size for this distribution is

m
c
5 q 1

p

N

h i�1

. (5)

The statistical distributions of clear intervals (gaps)

between clouds can be obtained from the corresponding

expressions for clouds the by interchanging p and q.

The cloud cover (fraction) is defined as

c 5
k

N
, (6)

where k is the number of all ‘‘cloudy’’ cells (not neces-

sarily consecutive) in the sample of the size N. The

probability of having k occupied cells in this sample

obeys the binomial distribution

n
cf

(k) 5
N

k

� �
pkqN�k, k 5 0, 1, . . . , N, (7)

which has the mean

k 5 Np, (8)

corresponding to c 5 p.

b. Continuous model

The continuous model is derived by subdividing each

discrete cell into a number (infinite in the limit) of small

subcells and defining their occupation probability such

that the average occupation probability of each greater

discrete cell remains p. In this model, cloud and gap length

distributions for an infinite 1D space are exponential,

f
c,g

(x) 5
1

L
c,g

e�x/L
c,g (9)

with the mean cloud and gap lengths being respectively

L
c
5� l

lnp
and L

g
5� l

lnq
. (10)

In the case of a 1D sample of finite length L 5 Nl (in

which N is not necessarily an integer), the length dis-

tributions become singular at x 5 L:

F
c,g

(x) 5 f
c,g

(x) 1 f o
c,gd(x� L), x 2 [0, L]. (11)

Here

f
c,g

(x) 5
1

L
c,g

1 1
1� (x/L

c,g
)

1 1 a
c,g

" #
e�x/L

c,g (12)

is the probability density for x , L, and

f o
c,g 5

e�a
c,g

1 1 a
c,g

(13)

gives the entirely cloudy (overcast) and clear sky con-

tributions at x 5 L. Here we have used the following

notation:

a
c
5

L

L
c

5�ln(pN) and a
g

5
L

L
g

5�ln(qN). (14)

It is easily confirmed that Fc,g, rather than fc,g, is normalized

ðL

0

F
c,g

(x) dx 5 1 (15)

and that the mean x obey the relations

1

x
c,g

5
1

L
c,g

1
1

L
. (16)

Note that in the infinite sample case discussed above,

Fc,g(x) [ fc,g(x).

A continuous analog of the binomial cloud cover

distribution (7) is also a singular density:

F
cf

(c) 5 f
cf

(c) 1 f
(0)
cf d(c) 1 f

(1)
cf d(1� c), (17)

obeying

ð1

0

F
cf

(c) dc 5 1. (18)

It has the following components: first, a continuous

density,

f
cf

(c) 5
2a

c
a

g

a
c
1 a

g

e�[a
c
c1a

g
(1�c)]

3 I
0
(Z) 1 [a

g
c 1 a

c
(1� c)]

I
1
(Z)

Z

� �
, (19)

where I0 and I1 are modified Bessel functions of the

argument,

Z 5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c
a

g
c(1� c)

q
; (20)
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and second, the entirely clear sky and overcast proba-

bilities:

f
(0)
cf 5

a
c

a
c
1 a

g

e�a
g and (21)

f
(1)
cf 5

a
g

a
c
1 a

g

e�a
c . (22)

The mean cloud cover for the distribution has the fol-

lowing form:

c 5
a

g

a
c
1 a

g

5
L

c

L
c
1 L

g

, (23)

which is in principle independent of L. For an infinite

sample this formula is somewhat intuitive—the mean

cloud cover is the mean cloud length divided by the sum

of the mean cloud and gap lengths—and has been pub-

lished elsewhere (Sánchez et al. 1994; Astin and Di

Girolamo 1999; Byrne 2005).

c. Derivation of model parameters from observations

If both Lc and Lg are obtained from observed cloud

and gap length histograms (or as simulated by a dynami-

cal model), they uniquely determine model parameters l

and p. We find p as a (numerical) solution of

lnp

ln(1� p)
5

L
g

L
c

, (24)

and then l can be determined as

l 5�L
c

lnp. (25)

Alternatively, Eq. (23) can be written in the form

c 5
ln(1� p)

lnp 1 ln(1� p)
, (26)

which can be used to derive p from the ‘‘observed’’ cloud

fraction.

The simplest method to derive Lc and Lg even from

noisy data is to use the mean cloud and gap lengths xc

and xg computed from the sample and Eq. (16):

1

L
c,g

5
1

x
c,g

� 1

L
. (27)

In the case of infinite sample size, determination of

the cloud and gap effective lengths also can be made by

regressing the logarithms of the corresponding histo-

grams against the cloud and gap lengths. However, this

procedure produces systematic errors when the sample

is finite. To show this, we write Eq. (12) in the form of

f
c,g

(x) 5
2L

c,g
1 L

L
c,g

(L
c,g

1 L)
1� x

2L
c,g

1 L

 !
e�x/L

c,g (28)

and note that for sufficiently small cloud sizes [when we

can use the fact that 1 1 y ’ ey, that is, for x� 2Lc,g 1 L]

this distribution density is close to exponential, but with

effective lengths L9c,g 6¼ Lc,g:

1

L9
c,g

5
1

L
c,g

1
1

2L
c,g

1 L
. (29)

The true values of Lc,g can be derived from Eq. (29)

because L is assumed to be known:

L
c,g

5
1

4
3L9

c,g
� L 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9L92

c,g 1 2LL9
c,g

1 L2
q	 


. (30)

Estimates of errors in p and l that result from neglecting

the influence of finite sample size [i.e., by using the L9c,g

values in Eq. (25) instead of the corrected Lc,g from

Eq. (30)] are presented in Fig. 1. It is seen that the errors

FIG. 1. Errors in (top) derived occupation p and (bottom) l that

result from neglecting the influence of finite N.
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are rather small. We find that p is overestimated when it is

less than 0.5 (and underestimated otherwise) by less than

0.02 in value for reasonable samples with more than five

cells. The cell size is always underestimated: by up to 15%

for N 5 5 and by 7%–8% for N 5 20. When the sample

consists of a large number of cells and Lc,g � L/2, the

relation (29) can be simplified

1

L9
c,g

’
1

L
c,g

1
1

L
5

1

x
c,g

(31)

so that L9c,g ’ xc,g, and the analysis is similar to Eq. (27)

can be applied.

The overcast contribution (13) also can be used for es-

timation of Lc when Lc� L (large p or small N or both),

while the corresponding singular part of the gap length

distribution (contribution from entirely clear sky) can be

used for determination of Lg in the case when Lg� L

(small p or small N or both).

3. Comparison with a dynamical model

To test our continuous cellular model, we next eval-

uate its ability to describe the statistics from large-eddy

simulations of shallow, maritime convection. The LES

model (Ackerman et al. 2004) treats three-dimensional

fluid dynamics of the atmosphere and incorporates a bin

microphysics model that resolves the size distributions

of aerosol and cloud droplets in each grid cell. It also

includes a two-stream radiative transfer model that treats

the vertical transport of radiation in each model column.

Three LES datasets are used, from simulations of ideal-

ized environmental conditions based on case studies from

trade-cumulus field projects. The ATEX simulations,

which are characterized as cumulus rising into a thin

stratocumulus layer, are based on an idealization of

measurements obtained during the Atlantic Trade Wind

Experiment (Stevens et al. 2001). The other two cases

are more characteristic of pure trade cumulus, with lesser

fractional cloud coverage. The BOMEX and RICO

simulations are respectively based on idealizations of

measurements obtained during the Barbados Oceano-

graphic and Meteorological Experiment (Siebesma et al.

2003) and the Rain in Cumulus over the Ocean project

(M. van Zanten 2008, unpublished manuscript). The

ATEX and BOMEX datasets consist of 33 scenes each

representing evolution of a cloud field with 15-min tem-

poral resolution on a 96 3 96 grid, and the RICO dataset

consists of 19 scenes with 1-h temporal resolution and

a 128 3 128 grid. Horizontal grid spacing is 100 m in all

cases. Here we simply define a column as cloudy if the

liquid water path (LWP) exceeds 10 g m22. (We plan

to investigate the dependence of these statistics on the

definition of cloud in future work.) The cloud masks for

the first 12 scenes of each dataset are shown in Figs. 2, 3,

and 4 and the last 12 scenes of the RICO dataset are shown

in Fig. 5.

To compute chord statistics we form an ensemble of

all 1D sections of each scene’s cloud mask (taken along

both north–south and east–west directions). Thus, if we

have an n 3 n grid and k scenes, our ensemble consists of

2 3 n 3 k samples of length n. It is essential for agree-

ment with our statistical model that the cloud conditions

(and the model parameters p and l) do not vary signifi-

cantly within a comparison dataset, which is not the case

for that ATEX and RICO simulations, during which the

cloud fields substantially evolve. Thus we limited the

ATEX dataset to the first 12 scenes and split the RICO

dataset into two overlapping subsets (Figs. 4 and 5). The

resulting cloud/gap length and cloud fraction distribu-

tion histograms are presented in Fig. 6 for the ATEX

and BOMEX datasets and in Fig. 7 for the two subsets of

the RICO dataset. The bin sizes for the cloud and gap

length histograms are the same as the spacing of the LES

grid mesh (100 m). For the cloud cover histogram the

number of bins covering the interval between 0 and 1 is

equal to the number of LES grid cells in a 1D transect

sample: 96 for ATEX and BOMEX and 128 for RICO;

thus, the respective bin sizes are 1/96 and 1/128 (both close

to 0.01). Such narrow bins result in noisy histograms

(especially for cloud cover); however, adopting the dis-

cretization of the LES grid mesh reveals narrow features,

such as the maxima in some cloud length histograms,

which would not be seen if, for example, logarithmically

sized bins were adopted. The theoretical distributions

shown in the figures are based on the parameters Lc and

Lg derived from the mean cloud and gap lengths in the

sample datasets according to Eq. (27). Note that the

CSM l is denoted in Figs. 6 and 7 by Lcell.

To evaluate the level of agreement between statistics

from the LES results and from our cellular model, we

tried Pearson’s x2 and Kolmogorov’s goodness-of-fit

tests (cf. Conover 1980). The x2 test is too weak to show

differences between the distributions in our case: it

indicates no disagreement between cloud cover dis-

tributions from the LES and our cellular model at all

significance levels, even if our cellular model distribu-

tion is replaced with uniform density. Kolmogorov’s test

is useful, however. The maximum significance level for

which this test shows no disagreement between the data

and the model is provided in Figs. 6 and 7 as ak. This

value gives the probability that it is wrong to reject the

hypothesis that the simulated data statistics agree with

our model. Thus, ak 5 1 indicates perfect agreement and

smaller values indicate poorer agreement. We also de-

fine a simple metric
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D 5
1

2

ð
F

s
(x)� F

m
(x)

�� �� dx, (32)

where Fs and Fm are, respectively, the simulated (from

the LES) and the modeled (cellular) distribution den-

sities normalized to unity (note that for proper nor-

malization the singular parts associated with entirely

clear and overcast samples must be included). This

metric indicates the fraction of cases in the simulated

ensemble that are ‘‘misplaced’’ relative to the cellular

model distribution. Here D 5 0 indicates that Fs [ Fm,

while D 5 1 indicates that Fs and Fm do not overlap [i.e.,

Fs(x) 5 0 when Fm(x) 6¼ 0 and vice versa]. This metric

responds to both systematic and random disagreements

between two distributions. We see that the statistical

noise is quite notable in the cloud cover histograms,

while the cloud and gap lengths histograms are relatively

smooth. To reduce the effect of the noise on the com-

parisons we also compute the smoothed cloud cover

densities (depicted by dashed–dotted curves) using a

15-bin moving average procedure (we also could have

chosen broader histogram bins for a comparable effect).

The difference between the smoothed and model dis-

tributions is characterized in the discussion below by

Dsm. To avoid confusion we will also explicitly call the

cells of our statistical model ‘‘CSM cells’’ to distinguish

them from LES model cells.

For the ATEX case of cumulus rising into stratocu-

mulus, our analysis indicates an average CSM cell size of

854 m, while the probability of a cell being cloudy is 0.6.

For the purer cumulus cloud cases of BOMEX and

RICO, the average CSM cell sizes are a bit larger (914 m

FIG. 2. Cloud mask from LES for the ATEX case of cumulus rising into stratocumulus (simulated times 0400–0645 h). Cloudy columns

defined as those with liquid water path .10 g m22. Distances on x and y axes given in km. LES grid spacing is 100 m on a 96 3 96 mesh.
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for BOMEX and 907–1018 m for RICO), while the cell

occupation probability is much smaller than for ATEX,

as expected: 0.13 for BOMEX and 0.19–0.24 for RICO.

The ATEX data also indicate larger clouds (1443-m

mean length; Lc 5 1699 m) and shorter gaps between

them (840-m mean length; Lg 5 920 m) than for the

purer cumulus cases. [Recall that the differences be-

tween mean cloud/gap lengths and the corresponding

Lc,g are due to the finite sample size; see Eq. (16).] For

BOMEX the mean cloud length is 435 m (Lc 5 456 m),

and the mean gap length is 3807 m (Lg 5 6310 m),

while for RICO the mean cloud length are 522 and

669 m (Lc 5 544 and 706 m) and the mean gap lengths

are 3234 and 2918 m (Lg 5 4328 and 3779 m).

Figures 6 and 7 show reasonably good agreement

between statistics from the LES dataset and our cellular

model. The mean cloud cover, as well as the entirely

clear and overcast fractions, shows agreement with the

model within one percentage point or better for all four

datasets considered. The cloud cover distributions are

closer to the model for ATEX and RICO (ak 5 1, D ,

10%, Dsm , 5%) than for BOMEX (ak 5 0.77, D 5 11%,

Dsm 5 9.2%). The latter disagreement is likely attrib-

utable to the larger deviation of the simulated cloud

length distributions from an exponential form in the

BOMEX dataset. This deviation, however, is also clearly

seen in both parts of the RICO dataset (although much

less pronounced in ATEX data): the cloud length his-

tograms for BOMEX and RICO both have a maximum

in the third bin (corresponding to 300 m), occupied with

about twice the probability of the first bin (100 m). This

deviation results in notable disagreements with our model

FIG. 3. As in Fig. 2, but for BOMEX trade cumulus at times 0400–1030 h.
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cloud length distributions and also a decrease in the

fraction of small cloud cover values (top panels of Figs. 6

and 7). While the mean cloud and gap lengths in our

cellular model and the LES dataset are guaranteed to be

identical by CSM construction, differences in the cloud

length distributions are large: D 5 20%, ak 5 0.01 for

BOMEX, and D 5 16%, ak 5 0.014 for the first part of

the RICO dataset (it is slightly better for the second

part: D 5 14%, ak 5 0.11). At the same time the gap

length distributions are in good agreement with the

model: ak 5 1 for both datasets, while D 5 4.5% for

BOMEX and 6% for RICO. We also see a better

agreement with LES of the CSM distributions that ac-

count for the finite sample length (12), shown with solid

lines, compared with their infinite-sample analogs (9),

shown with dashed lines.

It is likely that the LES statistics become unreliable

for scales approaching the grid spacing size; this behavior

can be expected to result from smoothing by high-order

advection, numerical diffusion, and explicit subgrid-scale

diffusion. Further understanding of the lack of expo-

nentiality in the LES statistics might be gained from

comparisons with real observations. The satellite data-

sets from the Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER) onboard the NASA

Terra spacecraft (Abrams 2000) may be particularly useful

for this purpose because of exceptionally high (15 m) res-

olution of these measurements. Unfortunately for our pur-

poses, currently published statistical analyses of ASTER

data (e.g., Dey et al. 2008; Zhao and Girolamo 2007)

deal with cloud area-equivalent diameters rather than

with chord statistics, so the issue is presently unresolved.

FIG. 4. As in Fig. 2, but for RICO trade cumulus at times 0600–1700 h. Note that the LES grid mesh is larger for RICO, at 128 3 128, while

the LES model pixel size remains equal to 100 m.
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The ATEX case of cumulus rising into stratocumulus

does not indicate pronounced underestimation (relative

to our CSM) of small clouds, and thus the agreement of

the LES cloud length statistics with our cellular model is

good in this case: D 5 6.9%, ak 5 0.81. The gap length

histogram, however, indicates some overestimation of

the likelihood of small gaps at the expense of gaps at

moderate sizes (approximately 1–2 km), thereby dimin-

ishing the agreement (D 5 10%, ak 5 0.17 for the gaps).

A possible source of deviation between the LES and

cellular model statistics is the gradual change in the cloud

field during the simulated period, which results in a non-

homogeneous statistical ensemble. While we reduced this

inhomogeneity somewhat by considering only the first

part of the ATEX dataset (including the second part

results in a bimodal cloud cover distribution), it is likely

that residual problems associated with the gradual evo-

lution remain.

4. Diverse ensembles and power-law chord
length distributions

In many observations, especially those with extensive

coverage (temporal, geographic, or both), cloud length

distributions are predominantly observed to follow a

power-law form (Cahalan and Joseph 1989; Koren et al.

2008), rather than the exponential form that emerges

from our cellular model. To obtain power-law distribu-

tions with our cellular model, we generalize the statistical

ensemble by allowing the cell cloudiness probability to

vary. This is a reasonable extension, since the probability

of cloudiness varies with meteorological conditions (e.g.,

consider the differences among the small set of cases

presented in the previous section). Thus we assume that p

is itself a random variable with its own statistical density

function g(p) (0 # p # 1), which is normalized on the unit

interval:

FIG. 5. As in Fig. 4, but for times 1300–2400 h.
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FIG. 6. Cloud and gap chord statistics from LES results for the (left) ATEX (simulation times 0400–0645 h) and (right) BOMEX (0400–

1030 h) cases. Cloudy columns are defined as those with LWP . 10 g m22. (top) Cloud cover distributions shown as histograms, 15-bin

moving window smoothing over histograms shown as dashed–dotted lines, and theoretical density [Eq. (19)] shown as solid lines. (middle),

(bottom) Cloud and gap length distributions, in which solid lines show corresponding theoretical densities [Eq. (12)] for finite samples and

dashed lines show theoretical densities for infinite samples [Eq. (9)]. Theoretical distributions are based on parameters derived from mean

cloud and gap lengths. Histograms bin widths are described in text.
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ð1

0

g(p) dp 5 1. (33)

This means that each sample in a diverse ensemble is

generated assuming a fixed p (which may differ, however,

from sample to sample). We do not consider a more

complex situation when p is allowed to vary within a

sample. We also do not consider the possibility of variation

of the CSM cell size l because of the difficulty of corre-

sponding analytical computations. Note that this gen-

eralization is much more natural in our (p, l) formulation

of the problem than in the equivalent (Lc, Lg) formulation

adopted, for example, by Astin and Di Girolamo (1999).

Below we will present examples for several simple forms

FIG. 7. As in Fig. 6, but for RICO field campaign simulations: (left) 0600–1700 h, (right) 1300–2400 h.
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of g(p), such as uniform and beta distributions, in both

discrete and continuous models. We will also describe (in

the framework of the continuous model) the conditions on

g(p) in general case, which are sufficient for the corre-

sponding cloud and/or gap distributions to have a power-

law form.

a. Discrete model

In the discrete model the generalized cloud length dis-

tribution is computed by integration of the distribution (1)

with g(p):

n
c
(m) 5

ð1

0

g(p)(1� p)pm�1 dp. (34)

In the simplest case of g(p) [ 1 this distribution takes the

form

n
c
(m) 5

1

m
� 1

m 1 1
5

1

m2 1 m
, (35)

which is normalized by the condition

�
‘

m51
n

c
(m) 5 1 (36)

and has a power-law form at large m:

n
c
(m � 1) ’ m�2. (37)

To chose a more general form of g(p) we refer to the

literature on cloud cover, which is a natural proxy for cloud

probability. In a number of studies the beta distribution

g
ab

(p) 5
1

B(a, b)
pa�1(1� p)b�1, (38)

with two parameters a, b . 0, has been used to model the

distribution of cloud cover (e.g., Falls 1974; Jones 1992).

Here

B(x, y) 5

ð1

0

tx�1(1� t)y�1 dt 5
G(x)G(y)

G(x 1 y)
(39)

is the beta function, and G(x) is the gamma function.

Obviously, g(p) [ 1 is a specific instance of Eq. (38),

with a 5 b 5 1. For other examples of beta distributions

see Fig. 9 (left panels). Substituting Eq. (38) into Eq.

(34), we obtain

n
c
(m) 5

1

B(a, b)

ð1

0

(1� p)bpm1a�2 dp

5
B(b 1 1, m 1 a� 1)

B(a, b)
. (40)

To estimate the behavior of the distribution (40) at large

m, we use the Stirling’s asymptotic formula for the beta

function:

B(x � 1, y) ’ G(y)x�y, (41)

where y is fixed. This yields

n
c
(m � 1) ’

G(a 1 b)

G(a)G(b)
G(b11)(m 1 a� 1)�(b11)

’ b
G(a 1 b)

G(a)
m�(b11), (42)

showing that at large m our cloud length distribution has

a power-law form. The chord length distribution of gaps

is the same as Eq. (42) only with a and b interchanged:

n
g
(m) 5

B(a 1 1, m 1 b� 1)

B(a, b)
, (43)

which at large m takes the form

n
g
(m � 1) ’ a

G(a 1 b)

G(b)
m�(a11). (44)

Note that the exponent in the cloud length distribution

relates to b, governing the behavior of g(p) when p is

close to unity (i.e., when clouds are expected to be large).

Conversely, the gap length distribution exponent relates

to a, governing g(p) at small p, which corresponds to small

clouds and large gaps. If g(p) is symmetric relative to p 5 ½

(i.e., a 5 b), cloudy and clear intervals have the same

asymptotic distribution,

n
c
(m) [ n

g
(m) ’ a

G(2a)

G(a)
m�(a11),

while for the uniform distribution (a 5 b 5 1) we obtain

Eq. (37).

Similar computations for cloud cover (see the appen-

dix) show that for N� 1, k� 1, and N 2 k� 1, cloud

fraction has the same beta distribution as the cell cloud-

iness probability:

n
cf

(c) 5
1

B(a, b)
ca�1(1� c)b�1. (45)

b. Continuous model

In the continuous model, unfortunately we are able to

perform few computations analytically (see the appen-

dix for details). The cloud and gap length distributions of

the diverse ensemble can be computed by integrating

Eq. (9) or (11) with g(p):

F(d)
c,g (x) 5

ð1

0

g(p)F
c,g

(x, p) dp. (46)
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Here Fc,g(x, p) is the generally singular length distribu-

tion for fixed occupation p. Below we will drop the su-

perscript (d) from the diverse sample distributions when

doing so does not cause confusion.

1) INFINITE SAMPLES

In the infinite sample case Eq. (46) takes the following

form:

f
c
(x) 5

ð1

0

g(p)

L
c
(p)

e�x/L
c
( p) dp

5�1

l

ð1

0

g(p)px/l lnp dp, (47)

and

f
g
(x) 5

ð1

0

g(p)

L
g
(p)

e�x/L
g
(p) dp

5�1

l

ð1

0

g(p)(1� p)x/l ln(1� p) dp

5�1

l

ð1

0

g(1� p)px/l lnp dp. (48)

In the simplest case g(p) [ 1 these integrals can be easily

computed and fc [ fg takes a power-law form:

f
c,g

(x) 5
1

l

x

l
1 1

	 
�2

. (49)

It is easily verified that this distribution is properly nor-

malized.

We can compute the cloud length distribution in the

more complicated case of rectangular g(p):

g(p) 5
1/2w for p 2 [p

0
� w, p

0
1 w]

0 otherwise

�
, (50)

where p0 is the mean probability and w is the distribu-

tion’s half-width (obviously w # p0 # 1 2 w). If p0 5 w 5

½ we obtain the case of g [ 1 discussed above. In the

contrasting case of a very narrow distribution (w � 1),

g(p) ’ d(p 2 p0), and fc is the same as for the case of

a single-probability model with p 5 p0. In the general

case fc from Eq. (47) takes the form

f
c
(x) 5� 1

2wl

ðp01w

p0�w

px/l lnp dp,

5
1

2w
e�(x1l)/L

1
l

L
1

(x 1 l)
1

l

(x 1 l)2

" #

� 1

2w
e�(x1l)/L�

l

L�(x 1 l)
1

l

(x 1 l)2

" #
, (51)

where

L
6

5� l

ln(p
0

6 w)
. (52)

It is not difficult to show that the distribution (51) has

exponential asymptotic unless p0 1 w 5 1, in which case

fc(x) } x22, as in Eq. (49). However, the transformation

of the distribution shape with increase of w is continuous

and takes the form of gradual fattening of the distribu-

tion tail, as shown in Fig. 8 for p0 5 ½.

In the case when g(p) is described by a beta distri-

bution [Eq. (38)], the cloud length distribution takes the

following form (see the appendix):

f
c
(x) 5

B
x

l
1 a, b

	 

lB(a, b)

c
x

l
1 a 1 b

	 

� c

x

l
1 a

	 
h i
, (53)

where c is the digamma function (logarithmic derivative

of the gamma function; cf. Gradshteyn and Ryzhik

1965). The corresponding gap length distribution can be

obtained from Eq. (53) by interchanging the indices

a and b [since gab(1 2 p) 5 gba(p)]:

f
g
(x) 5

B
x

l
1 b, a

	 

lB(a, b)

c
x

l
1 a 1 b

	 

� c

x

l
1 b

	 
h i
. (54)

Examples of cloud and gap length distributions for vari-

ous beta distribution parameters are shown in Fig. 9. As

expected, the cloud and gap length densities coincide for

symmetric distributions (a 5 b, Fig. 9 top). We also see

that variation of parameters of strongly asymmetric g(p)

(Fig. 9 bottom) leads to larger changes in the corre-

sponding cloud and gap distributions than in the symmetric

FIG. 8. Cloud length distribution densities [Eq. (51)] for p0 5 ½

and different values of the width w. The distribution of gap lengths

is identical to that for clouds in this case.
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case. The power-law asymptotic behavior in the displayed

cloud/gap size range is better pronounced for a, b , 1.

The asymptotic behavior of fc for large x � l has

a power-law form

f
c
(x � l) }

1

xb11
(55)

that is consistent with the discrete model result (42). In

the degenerate case b 5 1 when

g
a1

(p) 5 apa�1, (56)

Eq. (53) then takes the simple form

f
c
(x) 5

a

l

x

l
1 a

	 
�2
, (57)

which coincides with Eq. (49) when a 5 1.

In general, the asymptotic behavior of the cloud and

gap length distributions as x / ‘ is determined by the

integration range where p is close to 1 (otherwise the

factor px/l is very small). Therefore, asymptotes of fc and

fg depend on the way in which g(p) and g(1 2 p) re-

spectively approach p 5 1 [in the latter case this is the

same as the expansion of g(q) at q 5 0]. Indeed, the

largest clouds expectedly come from samples with large

p, while the largest gaps are from those with large q. For

example, when g(p) } (1 2 p)b21 5 qb21 for q� 1 (i.e.,

has a power-law asymptotic form, as in the case of beta

distribution], we can write Eq. (47) in the following form

(noticing that in this limit case ln p ’ q):

f
c
(x � l) ’

1

l

ð1

0

qb(1� q)x/l dp } B b 1 1,
x

l
1 1

	 


’ G(b 1 1)
x

l
1 1

	 
�(b11)

; x�(b11). (58)

Here we replaced g(p) by its expansion on the whole

unit interval, since only small values of q contribute to

the integration, and the values of g elsewhere do not

matter. We also used the asymptotic formula for the

beta function (41). Computations for gap size distribu-

tion are similar.

FIG. 9. (left) Examples of beta distributions of occupation probability for different values of parameters a and b.

(right) Corresponding cloud and gap distribution densities computed according to Eqs. (53) and (54). Since the

distributions in the top left plot are symmetric with respect to p 4 (1 2 p), the corresponding cloud and gap length

distributions coincide. In the bottom right, cloud and gap length distributions are shown respectively by thin black

and thick gray curves.
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We certainly cannot consider all possible shapes of

g(p) here; however, some observations are not difficult

to make based on the examples that we presented. In

particular, we saw in the case of rectangular g(p) that if

the distribution density of p is zero in a neighborhood of

p 5 1, the corresponding cloud length distribution (51)

has exponential asymptote. On the other hand, in the

case when g(p) approaches p 5 1 as a power-law func-

tion of q, the cloud length distribution also has a power-

law form. Other types of behavior of g require individual

investigations.

2) FINITE SAMPLES

In the finite sample case, when the cloud and gap length

distributions are described by Eqs. (11)–(13), and p obeys

the beta distribution, it can be demonstrated (see the

appendix) that the expression for the cloud length dis-

tribution consists of the infinite-sample term (53) and

a term proportional to the inverse sample length (and

therefore vanishing as L / ‘). However, a complete

analytical formula for this distribution can be obtained

only in the degenerate case of b 5 1 mentioned above:

f
c
(x) 5

a

l
1� x

L

� �
x

l
1 a

� ��2

1
a

L
1 1

x

L

� �

3
l

L
e(x1al)/L Ei �x 1 al

L

� �
1

x

l
1 a

� ��1
" #

, (59)

where Ei is the exponential integral. As L / ‘ this

expression converges to Eq. (57).

The expression for the overcast fraction in this case

takes the form

f o
c 5�al

L
e(L1al)/L Ei �L 1 al

L

� �
. (60)

Note that Ei(x) , 0 for negative x, thus the overcast

fraction is always positive. Clearly f c
o / 0 as L / ‘.

Plots of the cloud and gap length distributions (59) for

L 5 l, 5l, and ‘ are presented in Fig. 10 for the uniform

g(p) [ 1 (a 5 b 5 1), together with the corresponding

values of fc
o. These values show significant increase from

0 to 0.36 as L/l decreases from ‘ to 1, while the differ-

ences in density functions themselves (likely to be driven

by the corresponding change in normalization condi-

tions) are most pronounced at the shortest cloud and gap

lengths. As expected, the clearest asymptotic power-law

behavior is seen in the infinite sample case [when Eq. (59)

coincides with Eq. (57)].

5. Summary

Part I documents two cellular models intended to

describe cloud field statistics such as the distributions of

cloud and gap lengths and of cloud fraction. Our discrete

model can be used to construct examples of cloud fields

in both 1D and 2D, since the cell occupation probabili-

ties are independent of each other; however, since our

continuous model is well defined only in 1D (see Part I

for elaboration), we have restricted our analysis to cloud

statistics measured along 1D transects. Thus we have

considered distributions of cloud and gap chord lengths

rather than cloud and clear areas.

While our 1D cellular cloud models are mathemati-

cally well defined, their fidelity can be determined only

through comparison with statistics of either observed

cloud fields or those simulated with a dynamical model,

as done here using the output of large-eddy simulations

(LES) based on three case studies of maritime trade-

cumulus cloud fields. We have considered only the

continuous model, since distributions from its discrete

analog are not realistic by virtue of all its cloud and gap

lengths being integer multiples of the CSM cell length l.

The continuous model is not equivalent to a discrete

model just with a larger number of smaller cells: the

latter would produce rather homogeneous samples with

no clumpy clouds. Defining cloudy columns as those

with more than 10 g m22 liquid water path, 1D transect

ensembles were produced from the 2D LES fields by

taking all horizontal samples in the north–south and

east–west directions. Kolmogorov’s goodness-of-fit test

and another simple difference metric (32) were used to

compare the LES statistics with those from our cellular

model. The observed average CSM cell sizes range from

850 to 1000 m, while the cell occupation (cloudiness)

probability is in the range of 13%–24% for the purer

cumulus cases (BOMEX, RICO) and much greater, at

60%, for the case of cumulus rising into stratocumulus

FIG. 10. Cloud and gap length distribution densities [Eq. (59)] for

finite sample lengths L 5 l, 5l, and ‘ and for uniform g(p) [ 1. The

corresponding values of f c
o are computed according to Eq. (60).
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(ATEX). The chord length and cloud fraction distribu-

tions from our cellular model generally agree with those

from the LES datasets, with the main differences found

in the population of the cloud lengths approaching the

LES grid spacing (100 m) in the BOMEX and RICO

datasets. The cloud length distributions in these cases

have a peak at 200–300 m, which does not fit the expo-

nential distribution of the cellular model. This discrep-

ancy merits further study focusing on the structure of

cloud boundaries, from which the shortest cloud tran-

sects come.

We also have demonstrated how at certain conditions

the cloud and gap statistics in our cellular model can

change from an exponential distribution for a narrow

sample to a power-law distribution for a diverse sample

that includes a variety of meteorological states. We incor-

porate meteorological diversity into our cellular model by

allowing the cell cloudiness probability p to have its own

distribution rather than assuming a uniform value. This

approach can play an important role in statistical anal-

ysis of global satellite cloud datasets including a large

diversity of cloud types and atmospheric conditions.
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APPENDIX

Statistics of Diverse Ensembles

a. Cloud cover in discrete model

The computations in this section show that cloud cover

distribution in the discrete model statistically resembles

that of the cell-filling probability p. To demonstrate this

we perform an integration over p of the binomial distri-

bution (7) with g(p), as done above for the cloud length

distribution:

n(k) 5
N

k

� �ð1

0

g(p)pk(1� p)N�k dp. (A1)

In the general case when g(p) is a beta distribution (38),

we obtain

n(k) 5
N

k

 !
1

B(a, b)

ð1

0

pk1a�1(1� p)N�k1b�1 dp

5
N

k(N � k)

B(N, a 1 b)

B(k, a)B(N � k, b)
. (A2)

Now, assuming that N� 1, k� 1, and N 2 k� 1, we can

use the asymptotic formula for the beta function [Eq. (41)]

to derive

n(k) ’
N

k(N � k)

G(a 1 b)N�(a1b)

G(a)k�aG(b)(n� k)�b

5
1

N

1

B(a, b)

k

N

� �a�1

1� k

N

� �b�1

. (A3)

We notice that

n(c) 5 Nn(k) (A4)

since

ðN

0

n(k) dk 5

ð1

0

n(c) dc 5 1, (A5)

while dk 5 Ndc. Thus, Eq. (A3) translates into the beta

distribution (45) for the cloud cover c, which is identical

to the distribution of occupation probability.

b. Cloud length statistics in continuous model

To compute the cloud length distribution according to

Eq. (47) in the general case, it is convenient to use the

substitutions

u 5�lnp, p 5 e�u, and dp 5�e�u du. (A6)

Note that u runs from ‘ to 0 as p runs from 0 to 1. We

also introduce the following notation:

z 5
x

l
and h(u) 5 g(e�u). (A7)

In this notation Eq. (47) in the infinite sample case can

be written as

lf
c
(lz) 5�

ð1

0

g(p)pz lnp dp 5

ð‘

0

uh(u)e�(z11)u du, (A8)

which is essentially the Laplace transform (cf. Prudnikov

et al. 1992)

F(s) 5L[f(u)] 5

ð‘

0

f(u)e�su du

of f(u) 5 uh(u).

In the case when g(p) is a beta distribution

h
ab

(u) 5
1

B(a, b)
e�(a�1)u(1� e�u)b�1, (A9)

and we take a slightly different approach, writing
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lf
c
(lz) 5

1

B(a, b)

ð‘

0

ue�(z1a)u(1� e�u)b�1 du

5
F (z 1 a)

B(a, b)
, (A10)

where

F (s) 5

ð‘

0

u(1� e�u)b�1e�su du (A11)

is the Laplace transform of

f(u) 5 u(1� e�u)b�1. (A12)

This transform appears in the tables of Prudnikov et al.

(1992), yielding

F (s) 5 B(s, b)[c(s 1 b)� c(s)], (A13)

where B is the beta function and c is the digamma

function (logarithmic derivative of the gamma func-

tion), which leads to Eq. (53).

In the degenerate case b 5 1 we use the relations

c(x 1 1) 5 c(x) 1
1

x
and B(x, 1) 5

1

x

to derive

F (s) 5
1

s2
, (A14)

and fc(x) takes the form (57).

To see the asymptotic behavior of the distribution (53)

for large x� l (s� 1), we use the asymptotic approxi-

mation for the digamma function (cf. Gradshteyn and

Ryzhik 1965):

c(x � 1) ’ lnx� 1

2x
� � � � .

Thus,

c(s 1 b)� c(s) ’ ln 1 1
b

s

� �
’

b

s

[the contribution of the second term in the expansion is

of the order of s22]. Combining this result with Eq. (41)

for B(s, b) we find that

F (s � 1) }
1

sb11
;

thus, fc has a power-law form (55).

In the case of a finite sample, when the cloud length

distribution has the form (11)–(13), the density fc can be

written as

lf
c
(lz) 5�lnp 1 1

1 1 z lnp

1� n lnp

� �
pz

5 u 1 1
1� zu

1 1 nu

� �
e�u,

where we have used the substitution (A6). Here n [ N 5

L/l, and z is defined by Eq. (A7). In these notations the

cloud length density (46) for a diverse ensemble with p

obeying beta distribution will have the form

lf (d)
c (lz) 5� 1

B(a, b)

ð1

0

pa�1(1� p)b�1 lnp 1 1
1 1 z ln p

1� n ln p

� �
pz dp 5 I

1
1 I

2
,

where

I
1

5
1

B(a, b)

ð‘

0

ue�(z1a)u(1� e�u)b�1 du

and

I
2

5
1

B(a, b)

ð‘

0

ue�(z1a)u(1� e�u)b�1 1� zu

1 1 nu
du. (A15)

The first integral is identical to Eq. (A10), which we have

already computed in the infinite sample case. Similarly,

we can write the second integral as

I
2

5
G(z 1 a)

B(a, b)
, (A16)

where

G(s) 5

ð‘

0

u(1� e�u)b�1 1� zu

1 1 nu
e�su du (A17)

is the Laplace transform of

f(u) 5 u(1� e�u)b�1 1� zu

1 1 nu
. (A18)
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Unfortunately, we have not found or derived an expres-

sion for this transform in general case. However, in the

special case when b 5 1, f takes a simple form

f(u) 5
mu

u 1 m
� mzu2

u 1 m
, (A19)

where m 5 1/n, and we can use the formula from the

table of Prudnikov et al. (1992):

L xn

x 1 m

� �
5 (�1)n11

mnesm Ei(�sm)

1 �
n

k51
(k� 1)!

(�m)n�k

sk
,

where Ei is the exponential integral. This expression

takes the following form for n 5 1:

L x

x 1 m

� �
5 mesm Ei(�sm) 1

1

s
.

For n 5 2,

L x2

x 1 m

� �
5�m2esm Ei(�sm)� m

s
1

1

s2
.

Thus, the Laplace transform of f takes the form

G(s) 5 (1 1 zm)m mesm Ei(�sm) 1
1

s

� �
� zm

s2
(A20)

and

I
2

5 a(1 1 zm)m me(z1a)m Ei[�(z 1 a)m] 1
1

z 1 a

� �

� azm

(z 1 a)2
. (A21)

One can see that this expression is proportional to m 5 l/L;

thus, it vanishes in the infinite sample limit (L / ‘). In

this case the only contribution to fc is from I1, which

leads to Eq. (53).

The fraction of overcast samples f c
o in the diverse

sample scenario is defined as

f o
c 5

1

B(a, b)

ð1

0

pa�1(1� p)b�1 pn

1� n lnp
dp

5
1

B(a, b)

ð‘

0

e�(n1a)u(1� e�u)b�1

1 1 nu
du

5
G

0
(n 1 a)

B(a, b)
, (A22)

where

G
0
(s) 5

ð‘

0

(1� e�u)b�1

1 1 nu
e�su du (A23)

is the Laplace transform of

f(u) 5
(1� e�u)b�1

1 1 nu
. (A24)

Unfortunately, we have not found or derived the solution

to this transform in the general case. However, for b 5 1

f(u) 5
m

u 1 m
, (A25)

and we can use the formula (Prudnikov et al. 1992)

L 1

x 1 m

� �
5�esm Ei(�sm),

which yields

f o
c 5�a

n
e(n1a)/n Ei �n 1 a

n

� �
. (A26)

Note that Ei(x) , 0 for x , 0, and that f c
o / 0 as L / ‘,

since n } L.
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